Multimodal Learning in Loosely-Organized Web Images

Kun Duan, David J. Crandall, Dhruv Batra
{"title":"Multimodal Learning in Loosely-Organized Web Images","authors":"Kun Duan, David J. Crandall, Dhruv Batra","doi":"10.1109/CVPR.2014.316","DOIUrl":null,"url":null,"abstract":"Photo-sharing websites have become very popular in the last few years, leading to huge collections of online images. In addition to image data, these websites collect a variety of multimodal metadata about photos including text tags, captions, GPS coordinates, camera metadata, user profiles, etc. However, this metadata is not well constrained and is often noisy, sparse, or missing altogether. In this paper, we propose a framework to model these \"loosely organized\" multimodal datasets, and show how to perform loosely-supervised learning using a novel latent Conditional Random Field framework. We learn parameters of the LCRF automatically from a small set of validation data, using Information Theoretic Metric Learning (ITML) to learn distance functions and a structural SVM formulation to learn the potential functions. We apply our framework on four datasets of images from Flickr, evaluating both qualitatively and quantitatively against several baselines.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"72 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Photo-sharing websites have become very popular in the last few years, leading to huge collections of online images. In addition to image data, these websites collect a variety of multimodal metadata about photos including text tags, captions, GPS coordinates, camera metadata, user profiles, etc. However, this metadata is not well constrained and is often noisy, sparse, or missing altogether. In this paper, we propose a framework to model these "loosely organized" multimodal datasets, and show how to perform loosely-supervised learning using a novel latent Conditional Random Field framework. We learn parameters of the LCRF automatically from a small set of validation data, using Information Theoretic Metric Learning (ITML) to learn distance functions and a structural SVM formulation to learn the potential functions. We apply our framework on four datasets of images from Flickr, evaluating both qualitatively and quantitatively against several baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
松散组织的网络图像中的多模式学习
照片分享网站在过去几年变得非常流行,导致大量的在线图片。除了图像数据,这些网站还收集各种关于照片的多模态元数据,包括文本标签、字幕、GPS坐标、相机元数据、用户资料等。然而,这些元数据没有得到很好的约束,并且经常是嘈杂的、稀疏的或完全缺失的。在本文中,我们提出了一个框架来对这些“松散组织”的多模态数据集进行建模,并展示了如何使用一种新的潜在条件随机场框架来执行松散监督学习。我们从一小部分验证数据中自动学习LCRF的参数,使用信息理论度量学习(ITML)来学习距离函数,使用结构支持向量机公式来学习势函数。我们将我们的框架应用于来自Flickr的四个图像数据集,对几个基线进行定性和定量评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Visual Knowledge Bases via Object Discovery and Segmentation Multiple Structured-Instance Learning for Semantic Segmentation with Uncertain Training Data Parsing Occluded People L0 Norm Based Dictionary Learning by Proximal Methods with Global Convergence Generalized Pupil-centric Imaging and Analytical Calibration for a Non-frontal Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1