Multilayer Generalized Mean Neuron model for Blind Source Separation

Meenakshi Singh, Deepak Singh, P. Kalra
{"title":"Multilayer Generalized Mean Neuron model for Blind Source Separation","authors":"Meenakshi Singh, Deepak Singh, P. Kalra","doi":"10.1109/ISIC.2007.4450947","DOIUrl":null,"url":null,"abstract":"The fundamental issue in blind source separation (BSS) is to find a set of independent signals from the output of the mixing system, without the aid of information about the nature of the mixing system, for which most of the BSS algorithms use the concept of Independent component analysis. This paper proposes a new neuron model for independent component analysis (ICA) which can be used for separation of non-linear and noisy mixtures of signals. The technique proposed here utilizes generalized mean neuron (GMN) model, consisting of an aggregation function which is based on the generalized mean of all the inputs applied to signal mixtures. The proposed technique results in faster convergence, and is highly efficient for underdetermined system, with low CPU time.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The fundamental issue in blind source separation (BSS) is to find a set of independent signals from the output of the mixing system, without the aid of information about the nature of the mixing system, for which most of the BSS algorithms use the concept of Independent component analysis. This paper proposes a new neuron model for independent component analysis (ICA) which can be used for separation of non-linear and noisy mixtures of signals. The technique proposed here utilizes generalized mean neuron (GMN) model, consisting of an aggregation function which is based on the generalized mean of all the inputs applied to signal mixtures. The proposed technique results in faster convergence, and is highly efficient for underdetermined system, with low CPU time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盲源分离的多层广义平均神经元模型
盲源分离(BSS)的基本问题是从混合系统的输出中找到一组独立的信号,而不需要混合系统性质的信息,因此大多数BSS算法都使用独立分量分析的概念。本文提出了一种新的独立分量分析(ICA)神经元模型,该模型可用于分离非线性和噪声混合信号。本文提出的技术利用广义均值神经元(GMN)模型,该模型由一个基于所有输入的广义均值的聚合函数组成,该函数用于信号混合。该方法收敛速度快,对欠确定系统效率高,占用CPU时间少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Degree-of-Freedom Control of a Self-Sensing Micro-Actuator for HDD A Dual Mode Reference Governor for Discrete Time Systems with State and Control Constraints A Potential Field Approach for Controlling a Mobile Robot to Track a Moving Target Algorithm for variational inequality problems based on a gradient dynamical system designed using a control Liapunov function Optimal Tuning of PID Parameters Using Iterative Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1