{"title":"Powering an E-Ink Display from Soil Bacteria","authors":"Gabriela Marcano, P. Pannuto","doi":"10.1145/3485730.3493363","DOIUrl":null,"url":null,"abstract":"This demo showcases the power delivery potential of soil-based microbial fuel cells. We build a prototype energy harvesting setup for a soil microbial fuel cell, measure the amount of power that we can harvest, and use that energy to drive an e-ink display. Microbial fuel cells are highly sensitive to environmental conditions, especially soil moisture. In near-optimal, super moist conditions our cell provides approximately 100 &mgr;W of power at around 500 mV, which is ample power over time to power our system several times a day. In sum, we find that the confluence of ever lower-power electronics and new understanding of microbial fuel cell design means that \"soil-powered sensors\" are now feasible. There remains, however, significant future work to make these systems reliable and maximally performant. This demo is a working copy of the system presented at LP-IoT'21 [6].","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3493363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This demo showcases the power delivery potential of soil-based microbial fuel cells. We build a prototype energy harvesting setup for a soil microbial fuel cell, measure the amount of power that we can harvest, and use that energy to drive an e-ink display. Microbial fuel cells are highly sensitive to environmental conditions, especially soil moisture. In near-optimal, super moist conditions our cell provides approximately 100 &mgr;W of power at around 500 mV, which is ample power over time to power our system several times a day. In sum, we find that the confluence of ever lower-power electronics and new understanding of microbial fuel cell design means that "soil-powered sensors" are now feasible. There remains, however, significant future work to make these systems reliable and maximally performant. This demo is a working copy of the system presented at LP-IoT'21 [6].