Duty-cycle-accelerated hot-carrier degradation and lifetime evaluation for 700V lateral DMOS

Siyang Liu, Zhichao Li, Wangran Wu, Weifeng Sun, Shulang Ma, Yuwei Liu, Wei Su, Xiaohong Liu
{"title":"Duty-cycle-accelerated hot-carrier degradation and lifetime evaluation for 700V lateral DMOS","authors":"Siyang Liu, Zhichao Li, Wangran Wu, Weifeng Sun, Shulang Ma, Yuwei Liu, Wei Su, Xiaohong Liu","doi":"10.1109/ISPSD.2018.8393667","DOIUrl":null,"url":null,"abstract":"Due to serious self-heating effect, traditional DC stress is hard to be used for evaluating the hot-carrier degradation of the LDMOS above 600V. In this work, the hot-carrier degradation for a 724V-breakdown LDMOS is studied by adopting gate duty-cycle-accelerated AC stress. It demonstrates that hot-electrons injection and donor-like interface states generation happen near the drain when the gate pulse is high. No obvious degradation and recovery can be observed when the gate pulse is zero. Moreover, the short pulse edges enhance the decrease of on-resistance (Ron) due to transient hot-holes injection into bird's beak. The device lifetime is also calculated according to the proposed models related to duty-cycle.","PeriodicalId":166809,"journal":{"name":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2018.8393667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to serious self-heating effect, traditional DC stress is hard to be used for evaluating the hot-carrier degradation of the LDMOS above 600V. In this work, the hot-carrier degradation for a 724V-breakdown LDMOS is studied by adopting gate duty-cycle-accelerated AC stress. It demonstrates that hot-electrons injection and donor-like interface states generation happen near the drain when the gate pulse is high. No obvious degradation and recovery can be observed when the gate pulse is zero. Moreover, the short pulse edges enhance the decrease of on-resistance (Ron) due to transient hot-holes injection into bird's beak. The device lifetime is also calculated according to the proposed models related to duty-cycle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
700V横向DMOS的占空比加速热载流子退化和寿命评估
由于自热效应严重,传统的直流应力难以用于评价600V以上LDMOS的热载子降解。本文采用栅极占空比加速交流应力的方法研究了724v击穿LDMOS的热载流子降解。结果表明,栅极脉冲高时,在漏极附近产生热电子注入和类供体界面态。当栅脉冲为零时,没有明显的退化和恢复。此外,短脉冲边缘增强了瞬态热孔注入鸟喙的导通电阻(Ron)的减小。根据所提出的有关占空比的模型,计算了器件寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMOS bi-directional ultra-wideband galvanically isolated die-to-die communication utilizing a double-isolated transformer Local lifetime control for enhanced ruggedness of HVDC thyristors P-gate GaN HEMT gate-driver design for joint optimization of switching performance, freewheeling conduction and short-circuit robustness Influence of the off-state gate-source voltage on the transient drain current response of SiC MOSFETs Reduction of RonA retaining high threshold voltage in SiC DioMOS by improved channel design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1