On the Development of High Power DC-DC Step-Down Converter with Energy Recovery Snubber

A. Singh, M. Borage, S. Tiwari, A. Thakurta
{"title":"On the Development of High Power DC-DC Step-Down Converter with Energy Recovery Snubber","authors":"A. Singh, M. Borage, S. Tiwari, A. Thakurta","doi":"10.1155/2012/806738","DOIUrl":null,"url":null,"abstract":"The effect of switching losses on the efficiency of a switch mode power converter and methods adopted for its improvement using an energy recovery lossless snubber has been presented. A comparative analysis of various types of soft switching techniques along with effects of dissipative and nondissipative snubbers on efficiency of the converter has been carried out before zeroing in on the selected scheme. The selected snubber serves the dual function of a turn-on and turn-off snubber and thereby reducing the switching losses both during turn-on and turn-off transients, resulting in improved efficiency of the converter. A detailed design procedure of the snubber for high-power applications taking into account various effects such as diode reverse recovery, diode voltage stress, and minimum and maximum duty cycle limits, has been presented in this paper. Importance of practical aspects in layout to minimize wiring inductance is also highlighted. A high-power prototype of buck converter has been developed to experimentally validate the theoretical design and analytical observations.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Power Electronic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/806738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The effect of switching losses on the efficiency of a switch mode power converter and methods adopted for its improvement using an energy recovery lossless snubber has been presented. A comparative analysis of various types of soft switching techniques along with effects of dissipative and nondissipative snubbers on efficiency of the converter has been carried out before zeroing in on the selected scheme. The selected snubber serves the dual function of a turn-on and turn-off snubber and thereby reducing the switching losses both during turn-on and turn-off transients, resulting in improved efficiency of the converter. A detailed design procedure of the snubber for high-power applications taking into account various effects such as diode reverse recovery, diode voltage stress, and minimum and maximum duty cycle limits, has been presented in this paper. Importance of practical aspects in layout to minimize wiring inductance is also highlighted. A high-power prototype of buck converter has been developed to experimentally validate the theoretical design and analytical observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带能量回收缓冲器的大功率DC-DC降压变换器的研制
介绍了开关损耗对开关模式功率变换器效率的影响,以及采用能量恢复无损缓冲器提高开关模式功率变换器效率的方法。在选定方案之前,对各种软开关技术以及耗散和非耗散缓冲器对变换器效率的影响进行了比较分析。所选择的缓冲器具有导通和关断的双重功能,从而降低了导通和关断瞬态的开关损耗,从而提高了变换器的效率。本文给出了考虑二极管反向恢复、二极管电压应力、最小和最大占空比限制等各种影响的大功率应用缓冲器的详细设计过程。同时强调了在布线中减小布线电感的实用性。研制了大功率降压变换器样机,对理论设计和分析结果进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Handling Methods and Comparison for Different DC Breaker Topologies and MMC Topologies of the HVDC System A Novel Analog Circuit Design for Maximum Power Point Tracking of Photovoltaic Panels Quantitative Analysis of Efficiency Improvement of a Propulsion Drive by Using SiC Devices: A Case of Study Experimental Verification of a Battery Energy Storage System for Integration with Photovoltaic Generators Sensorless Control of Nonsinusoidal Permanent Magnet Brushless Motor Using Selective Torque Harmonic Elimination Control Method Based on Full-Order Sliding Mode Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1