A sparsity-based training algorithm for Least Squares SVM

Jie Yang, Jun Ma
{"title":"A sparsity-based training algorithm for Least Squares SVM","authors":"Jie Yang, Jun Ma","doi":"10.1109/CIDM.2014.7008688","DOIUrl":null,"url":null,"abstract":"We address the training problem of the sparse Least Squares Support Vector Machines (SVM) using compressed sensing. The proposed algorithm regards the support vectors as a dictionary and selects the important ones that minimize the residual output error iteratively. A measurement matrix is also introduced to reduce the computational cost. The main advantage is that the proposed algorithm performs model training and support vector selection simultaneously. The performance of the proposed algorithm is tested with several benchmark classification problems in terms of number of selected support vectors and size of the measurement matrix. Simulation results show that the proposed algorithm performs competitively when compared to existing methods.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We address the training problem of the sparse Least Squares Support Vector Machines (SVM) using compressed sensing. The proposed algorithm regards the support vectors as a dictionary and selects the important ones that minimize the residual output error iteratively. A measurement matrix is also introduced to reduce the computational cost. The main advantage is that the proposed algorithm performs model training and support vector selection simultaneously. The performance of the proposed algorithm is tested with several benchmark classification problems in terms of number of selected support vectors and size of the measurement matrix. Simulation results show that the proposed algorithm performs competitively when compared to existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏的最小二乘支持向量机训练算法
我们利用压缩感知解决了稀疏最小二乘支持向量机(SVM)的训练问题。该算法将支持向量视为字典,迭代地选取重要的支持向量,使剩余输出误差最小。为了减少计算成本,还引入了测量矩阵。该算法的主要优点是可以同时进行模型训练和支持向量选择。根据所选择的支持向量的数量和度量矩阵的大小,用几个基准分类问题测试了该算法的性能。仿真结果表明,该算法与现有算法相比具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1