High-speed quantitative phase imaging of dynamic thermal deformation in laser irradiated films

L. Taylor, A. Brown, K. Olson, J. Talghader
{"title":"High-speed quantitative phase imaging of dynamic thermal deformation in laser irradiated films","authors":"L. Taylor, A. Brown, K. Olson, J. Talghader","doi":"10.1117/12.2195107","DOIUrl":null,"url":null,"abstract":"We present a technique for high-speed imaging of the dynamic thermal deformation of transparent substrates under high-power laser irradiation. Traditional thermal sensor arrays are not fast enough to capture thermal decay events. Our system adapts a Mach-Zender interferometer, along with a high-speed camera to capture phase images on sub-millisecond time-scales. These phase images are related to temperature by thermal expansion effects and by the change of refractive index with temperature. High power continuous-wave and long-pulse laser damage often hinges on thermal phenomena rather than the field-induced effects of ultra-short pulse lasers. Our system was able to measure such phenomena. We were able to record 2D videos of 1 ms thermal deformation waves, with 6 frames per wave, from a 100 ns, 10 mJ Q-switched Nd:YAG laser incident on a yttria-coated glass slide. We recorded thermal deformation waves with peak temperatures on the order of 100 degrees Celsius during non-destructive testing.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2195107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a technique for high-speed imaging of the dynamic thermal deformation of transparent substrates under high-power laser irradiation. Traditional thermal sensor arrays are not fast enough to capture thermal decay events. Our system adapts a Mach-Zender interferometer, along with a high-speed camera to capture phase images on sub-millisecond time-scales. These phase images are related to temperature by thermal expansion effects and by the change of refractive index with temperature. High power continuous-wave and long-pulse laser damage often hinges on thermal phenomena rather than the field-induced effects of ultra-short pulse lasers. Our system was able to measure such phenomena. We were able to record 2D videos of 1 ms thermal deformation waves, with 6 frames per wave, from a 100 ns, 10 mJ Q-switched Nd:YAG laser incident on a yttria-coated glass slide. We recorded thermal deformation waves with peak temperatures on the order of 100 degrees Celsius during non-destructive testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光辐照薄膜动态热变形的高速定量相位成像
提出了一种高功率激光照射下透明基底动态热变形的高速成像技术。传统的热传感器阵列速度不够快,无法捕获热衰减事件。我们的系统采用Mach-Zender干涉仪,以及高速相机来捕获亚毫秒时间尺度的相位图像。这些相位像通过热膨胀效应和折射率随温度的变化与温度相关。高功率连续波和长脉冲激光损伤往往取决于热现象,而不是超短脉冲激光的场致效应。我们的系统能够测量这种现象。我们能够记录1毫秒热变形波的2D视频,每波6帧,从100 ns, 10 mJ调q Nd:YAG激光入射到钇涂层玻璃载玻片上。在无损检测过程中,我们记录了峰值温度在100摄氏度左右的热变形波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of particle shape on the laser-contaminant interaction induced damage on the protective capping layer of 1ω high reflector mirror coatings Direct comparison of statistical damage frequency method and raster scan procedure Refined metrology of spatio-temporal dynamics of nanosecond laser pulses Characterization of damage precursor density from laser damage probability measurements with non-Gaussian beams Direct absorption measurements in thin rods and optical fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1