Fuzzy simulated evolution algorithm for multi-objective optimization of VLSI placement

S. M. Sait, H. Youssef, Hussain Ali
{"title":"Fuzzy simulated evolution algorithm for multi-objective optimization of VLSI placement","authors":"S. M. Sait, H. Youssef, Hussain Ali","doi":"10.1109/CEC.1999.781912","DOIUrl":null,"url":null,"abstract":"A fuzzy simulated evolution algorithm is presented for multi-objective minimization of VLSI cell placement problem. We propose a fuzzy goal-based search strategy combined with a fuzzy allocation scheme. The allocation scheme tries to minimize multiple objectives and adds controlled randomness as opposed to original deterministic allocation schemes. Experiments with benchmark tests demonstrate a noticeable improvement in solution quality.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

A fuzzy simulated evolution algorithm is presented for multi-objective minimization of VLSI cell placement problem. We propose a fuzzy goal-based search strategy combined with a fuzzy allocation scheme. The allocation scheme tries to minimize multiple objectives and adds controlled randomness as opposed to original deterministic allocation schemes. Experiments with benchmark tests demonstrate a noticeable improvement in solution quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超大规模集成电路多目标优化的模糊模拟进化算法
针对超大规模集成电路单元布局问题,提出了一种模糊模拟进化算法。提出了一种基于模糊目标的搜索策略,并结合模糊分配方案。与原有的确定性分配方案相比,该分配方案尽量减少多个目标,并增加了可控随机性。使用基准测试进行的实验表明,解决方案质量得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1