Convolution Neural Network Architectures for Motor Imagery EEG Signal Classification

P. Nagabushanam, S. George, D. J. Dolly, S. Radha
{"title":"Convolution Neural Network Architectures for Motor Imagery EEG Signal Classification","authors":"P. Nagabushanam, S. George, D. J. Dolly, S. Radha","doi":"10.4018/ijaiml.2021010102","DOIUrl":null,"url":null,"abstract":"This paper has made a survey on motor imagery EEG signals and different classifiers to analyze them. Resolution for medical images like CT, MRI can be improved using deep sense CNN and improved resolution technology. Drowsiness of a student can be analyzed using deep CNN and it helps in teaching, assessment of the student. The authors have proposed 1D-CNN with 2 layers and 3 layers architecture to classify EEG signal for eyes open and eyes closed conditions. Various activation functions and combinations are tried for 2-layer 1D-CNN. Similarly, various loss models are applied in compile model to check the CNN performance. Simulation is carried out using Python 2.7 and 1D-CNN with 3 layers show better performance as it increases number of training parameters by increasing number of layers in the architecture. Accuracy and kappa coefficient increase whereas hamming loss and logloss decreases by increasing number of layers in CNN architecture.","PeriodicalId":217541,"journal":{"name":"Int. J. Artif. Intell. Mach. Learn.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Mach. Learn.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijaiml.2021010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper has made a survey on motor imagery EEG signals and different classifiers to analyze them. Resolution for medical images like CT, MRI can be improved using deep sense CNN and improved resolution technology. Drowsiness of a student can be analyzed using deep CNN and it helps in teaching, assessment of the student. The authors have proposed 1D-CNN with 2 layers and 3 layers architecture to classify EEG signal for eyes open and eyes closed conditions. Various activation functions and combinations are tried for 2-layer 1D-CNN. Similarly, various loss models are applied in compile model to check the CNN performance. Simulation is carried out using Python 2.7 and 1D-CNN with 3 layers show better performance as it increases number of training parameters by increasing number of layers in the architecture. Accuracy and kappa coefficient increase whereas hamming loss and logloss decreases by increasing number of layers in CNN architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动意象脑电信号分类的卷积神经网络结构
本文对运动意象脑电信号和不同的分类器进行了综述,并对其进行了分析。对于CT、MRI等医学图像,可以使用深度感CNN和改进的分辨率技术来提高分辨率。使用深度CNN可以分析学生的困倦,这有助于教学,评估学生。提出了两层和三层结构的1D-CNN对睁眼和闭眼状态下的脑电信号进行分类。对2层1D-CNN尝试了各种激活函数和组合。同样,在编译模型中使用各种损失模型来检验CNN的性能。使用Python 2.7进行仿真,3层的1D-CNN通过增加体系结构的层数来增加训练参数的数量,表现出更好的性能。随着CNN结构层数的增加,精度和kappa系数增加,而hamming损耗和logloss降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Implications of Adopting AI and Machine Learning in Marketing, Servicing, and Communications Technology Survey of Recent Applications of Artificial Intelligence for Detection and Analysis of COVID-19 and Other Infectious Diseases Boosting Convolutional Neural Networks Using a Bidirectional Fast Gated Recurrent Unit for Text Categorization Using Open-Source Software for Business, Urban, and Other Applications of Deep Neural Networks, Machine Learning, and Data Analytics Tools Autonomous Navigation Using Deep Reinforcement Learning in ROS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1