AffectPT-br: an Affective Lexicon based on LIWC 2015

Flavio Carvalho, G. Santos, G. Guedes
{"title":"AffectPT-br: an Affective Lexicon based on LIWC 2015","authors":"Flavio Carvalho, G. Santos, G. Guedes","doi":"10.1109/SCCC.2018.8705251","DOIUrl":null,"url":null,"abstract":"Emotion detection is crucial in Human-Computer Interaction (HCI). Computers can never respond to individuals affective state if it cannot identify its emotion. Categorical approaches are commonly used for emotion detection in texts. It considers training models based on a set of affective states. Categorical approaches are often based on a dictionary that contains words associated with emotional categories. In this scenario, LIWC dictionaries have been widely used in psychology and linguistics. There are dictionaries in many languages, including Brazilian Portuguese (LIWC2007pt). This work focuses on the development of AffectPT-br, a new Brazilian Portuguese affective dictionary based on the LIWC 2015 English dictionary. We produced two text classification experiments with real datasets from social networks in order to compare AffectPT-br with LIWC2007pt. Results indicate AffectPT-br outperforms LIWC2007pt in the classification task with all classification algorithms we adopted.","PeriodicalId":235495,"journal":{"name":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2018.8705251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Emotion detection is crucial in Human-Computer Interaction (HCI). Computers can never respond to individuals affective state if it cannot identify its emotion. Categorical approaches are commonly used for emotion detection in texts. It considers training models based on a set of affective states. Categorical approaches are often based on a dictionary that contains words associated with emotional categories. In this scenario, LIWC dictionaries have been widely used in psychology and linguistics. There are dictionaries in many languages, including Brazilian Portuguese (LIWC2007pt). This work focuses on the development of AffectPT-br, a new Brazilian Portuguese affective dictionary based on the LIWC 2015 English dictionary. We produced two text classification experiments with real datasets from social networks in order to compare AffectPT-br with LIWC2007pt. Results indicate AffectPT-br outperforms LIWC2007pt in the classification task with all classification algorithms we adopted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LIWC 2015的情感词典AffectPT-br
情感检测在人机交互(HCI)中至关重要。如果计算机不能识别个人的情感,它就永远无法对个人的情感状态做出反应。分类方法是文本情感检测的常用方法。它考虑基于一组情感状态的训练模型。分类方法通常基于包含与情感类别相关的单词的字典。在这种情况下,LIWC词典在心理学和语言学中得到了广泛的应用。有许多语言的字典,包括巴西葡萄牙语(liwc2007)。这项工作的重点是AffectPT-br的开发,这是一个基于LIWC 2015英语词典的新巴西葡萄牙语情感词典。我们使用来自社交网络的真实数据集进行了两个文本分类实验,以便将affect - pt -br与LIWC2007pt进行比较。结果表明,在我们采用的所有分类算法中,AffectPT-br在分类任务中的表现都优于LIWC2007pt。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHAVE: Resource Consolidation with High Availability on Virtualized Environments Constraint Bag Process Model: An Interdisciplinary Process Mining Approach to Lean Construction Extending the CMHD Compact Data Structure to Compute Aggregations over Data Warehouses A Variable Neighbourhood Search Algorithm for the Beam Angle Selection Problem in Radiation Therapy Algorithms for the Unrelated Parallel Machine Scheduling Problem with Sequence Dependent Setup Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1