Dataflow computing with Polymorphic Registers

C. Ciobanu, G. Gaydadjiev, C. Pilato, D. Sciuto
{"title":"Dataflow computing with Polymorphic Registers","authors":"C. Ciobanu, G. Gaydadjiev, C. Pilato, D. Sciuto","doi":"10.1109/SAMOS.2013.6621140","DOIUrl":null,"url":null,"abstract":"Heterogeneous systems are becoming increasingly popular for data processing. They improve performance of simple kernels applied to large amounts of data. However, sequential data loads may have negative impact. Data parallel solutions such as Polymorphic Register Files (PRFs) can potentially accelerate applications by facilitating high speed, parallel access to performance-critical data. Furthermore, by PRF customization, specific data path features are exposed to the programmer in a very convenient way. PRFs allow additional control over the registers dimensions, and the number of elements which can be simultaneously accessed by computational units. This paper shows how PRFs can be integrated in dataflow computational platforms. In particular, starting from an annotated source code, we present a compiler-based methodology that automatically generates the customized PRFs and the enhanced computational kernels that efficiently exploit them.","PeriodicalId":382307,"journal":{"name":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"20 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2013.6621140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous systems are becoming increasingly popular for data processing. They improve performance of simple kernels applied to large amounts of data. However, sequential data loads may have negative impact. Data parallel solutions such as Polymorphic Register Files (PRFs) can potentially accelerate applications by facilitating high speed, parallel access to performance-critical data. Furthermore, by PRF customization, specific data path features are exposed to the programmer in a very convenient way. PRFs allow additional control over the registers dimensions, and the number of elements which can be simultaneously accessed by computational units. This paper shows how PRFs can be integrated in dataflow computational platforms. In particular, starting from an annotated source code, we present a compiler-based methodology that automatically generates the customized PRFs and the enhanced computational kernels that efficiently exploit them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多态寄存器的数据流计算
异构系统在数据处理中越来越受欢迎。它们提高了应用于大量数据的简单内核的性能。但是,顺序加载数据可能会产生负面影响。诸如多态寄存器文件(prf)之类的数据并行解决方案可以通过促进对性能关键数据的高速并行访问来加速应用程序。此外,通过PRF定制,特定的数据路径特性以一种非常方便的方式暴露给程序员。prf允许对寄存器的维度和计算单元可以同时访问的元素的数量进行额外的控制。本文展示了如何将PRFs集成到数据流计算平台中。特别是,从带注释的源代码开始,我们提出了一种基于编译器的方法,该方法可以自动生成定制的prf和有效利用它们的增强计算内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Workload-dependent relative fault sensitivity and error contribution factor of GPU onchip memory structures TimeCube: A manycore embedded processor with interference-agnostic progress tracking An effective model extraction method with state space compression for model checking SystemC TLM designs A just-in-time modulo scheduling for virtual coarse-grained reconfigurable architectures An embedded hardware-efficient architecture for real-time cascade Support Vector Machine classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1