A Novel Unsupervised Autoencoder-Based HFOs Detector in Intracranial EEG Signals

Weilai Li, Lanfeng Zhong, Weixi Xiang, Tongzhou Kang, Dakun Lai
{"title":"A Novel Unsupervised Autoencoder-Based HFOs Detector in Intracranial EEG Signals","authors":"Weilai Li, Lanfeng Zhong, Weixi Xiang, Tongzhou Kang, Dakun Lai","doi":"10.1109/icassp43922.2022.9746014","DOIUrl":null,"url":null,"abstract":"High frequency oscillations (HFOs) have demonstrated their potency acting as an effective biomarker in epilepsy. However, most of the existing HFOs detectors are based on manual feature extraction and supervised learning, which incur laborious feature selection and time-consuming labeling process. In order to tackle these issues, we propose an automatic unsupervised HFOs detector based on convolutional variational autoencoder (CVAE). First, each selected HFO candidate (via an initial detection method) is converted into a 2-D time-frequency map (TFM) using continuous wavelet transform (CWT). Then, CVAE is trained on the red channel of the TFM (R-TFM) dataset so as to achieve the goal of dimensionality reduction and reconstruction of input feature. The reconstructed R-TFM dataset is later classified by K-means algorithm. Experimental results show that the proposed method outperforms four existing detectors, and achieve 92.85% in accuracy, 93.91% in sensitivity, and 92.14% in specificity.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High frequency oscillations (HFOs) have demonstrated their potency acting as an effective biomarker in epilepsy. However, most of the existing HFOs detectors are based on manual feature extraction and supervised learning, which incur laborious feature selection and time-consuming labeling process. In order to tackle these issues, we propose an automatic unsupervised HFOs detector based on convolutional variational autoencoder (CVAE). First, each selected HFO candidate (via an initial detection method) is converted into a 2-D time-frequency map (TFM) using continuous wavelet transform (CWT). Then, CVAE is trained on the red channel of the TFM (R-TFM) dataset so as to achieve the goal of dimensionality reduction and reconstruction of input feature. The reconstructed R-TFM dataset is later classified by K-means algorithm. Experimental results show that the proposed method outperforms four existing detectors, and achieve 92.85% in accuracy, 93.91% in sensitivity, and 92.14% in specificity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于无监督自编码器的颅内脑电信号HFOs检测器
高频振荡(hfo)已经证明了它们作为癫痫有效生物标志物的效力。然而,现有的HFOs检测器大多是基于人工特征提取和监督学习,这导致了费力的特征选择和耗时的标记过程。为了解决这些问题,我们提出了一种基于卷积变分自编码器(CVAE)的自动无监督hfo检测器。首先,使用连续小波变换(CWT)将每个选定的候选HFO(通过初始检测方法)转换为二维时频图(TFM)。然后,在TFM (R-TFM)数据集的红色通道上训练CVAE,以达到降维重建输入特征的目的。重构后的R-TFM数据集采用K-means算法进行分类。实验结果表明,该方法优于现有的4种检测器,准确率为92.85%,灵敏度为93.91%,特异性为92.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Attention Graph Convolution Network for Functional Connectome Classification Improving Biomedical Named Entity Recognition with a Unified Multi-Task MRC Framework Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation Sensors to Sign Language: A Natural Approach to Equitable Communication Estimation of the Admittance Matrix in Power Systems Under Laplacian and Physical Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1