k-Nearest Neighborhood Structure (k-NNS) based alignment-free method for fingerprint template protection

M. Sandhya, M. Prasad
{"title":"k-Nearest Neighborhood Structure (k-NNS) based alignment-free method for fingerprint template protection","authors":"M. Sandhya, M. Prasad","doi":"10.1109/ICB.2015.7139100","DOIUrl":null,"url":null,"abstract":"In this paper we focus on constructing k-Nearest Neighborhood Structure(k - NNS) for minutiae points in a fingerprint image. For each minutiae point in a fingerprint, a k - NNS is constructed taking the local and global features of minutiae points. This structure is quantized and mapped onto a 2D array to generate a fixed length 1D bit-string. Further this bit string is applied with a DFT to generate a complex vector. Finally the complex vector is multiplied by a user specific random matrix to generate the cancelable template. We tested our proposed method on database FV C2002 and experimental results depicts the validity of the proposed method in terms of requirements of cancelable biometrics namely diversity, accuracy, irreversibility and revocability.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

In this paper we focus on constructing k-Nearest Neighborhood Structure(k - NNS) for minutiae points in a fingerprint image. For each minutiae point in a fingerprint, a k - NNS is constructed taking the local and global features of minutiae points. This structure is quantized and mapped onto a 2D array to generate a fixed length 1D bit-string. Further this bit string is applied with a DFT to generate a complex vector. Finally the complex vector is multiplied by a user specific random matrix to generate the cancelable template. We tested our proposed method on database FV C2002 and experimental results depicts the validity of the proposed method in terms of requirements of cancelable biometrics namely diversity, accuracy, irreversibility and revocability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k-最近邻结构(k-NNS)的无对齐指纹模板保护方法
本文主要研究指纹图像中细微点的k近邻结构(k - NNS)的构造。对于指纹中的每一个细微点,分别利用细微点的局部特征和全局特征构建k -神经网络。该结构被量子化并映射到二维数组上,以生成固定长度的1D位串。进一步,将该位串应用于DFT以生成复向量。最后,将复向量与用户指定的随机矩阵相乘,生成可取消模板。我们在数据库FV C2002上测试了我们提出的方法,实验结果描述了所提出的方法在可取消生物特征要求方面的有效性,即多样性,准确性,不可逆性和可撤销性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1