Recognition of unconstrained handwritten digits using modified chaotic neural networks

Han-Go Choi, Jae-Heung Cho, Sang-Hee Kim, Sang-Jae Lee
{"title":"Recognition of unconstrained handwritten digits using modified chaotic neural networks","authors":"Han-Go Choi, Jae-Heung Cho, Sang-Hee Kim, Sang-Jae Lee","doi":"10.1109/IJCNN.1999.833549","DOIUrl":null,"url":null,"abstract":"This paper describes an off-line method for recognizing totally unconstrained handwritten digits using modified chaotic neural networks (CNN). Since the CNN has inherently the characteristics of highly nonlinear dynamics it can be an appropriate network for the robust classification of complex patterns. The CNN in this paper is trained by the error backpropagation algorithm. Digit identification starts with extraction of features from the raw digit images and then recognizes digits using the CNN based classifier The performance of the CNN classifier is evaluated on the Concordia database. For the relative comparison of recognition performance the CNN classifier is compared with the recurrent neural networks (RNN) classifier Experimental results show that the classification rate is 98.4%. It indicates that the CNN classifier outperforms the RNN classifier as well as other classifiers that have been reported on the same database.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes an off-line method for recognizing totally unconstrained handwritten digits using modified chaotic neural networks (CNN). Since the CNN has inherently the characteristics of highly nonlinear dynamics it can be an appropriate network for the robust classification of complex patterns. The CNN in this paper is trained by the error backpropagation algorithm. Digit identification starts with extraction of features from the raw digit images and then recognizes digits using the CNN based classifier The performance of the CNN classifier is evaluated on the Concordia database. For the relative comparison of recognition performance the CNN classifier is compared with the recurrent neural networks (RNN) classifier Experimental results show that the classification rate is 98.4%. It indicates that the CNN classifier outperforms the RNN classifier as well as other classifiers that have been reported on the same database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进混沌神经网络的无约束手写数字识别
本文描述了一种使用改进混沌神经网络(CNN)识别完全无约束手写数字的离线方法。由于CNN本身具有高度非线性的动态特性,因此可以作为复杂模式鲁棒分类的合适网络。本文采用误差反向传播算法对CNN进行训练。数字识别首先从原始数字图像中提取特征,然后使用基于CNN的分类器进行数字识别,CNN分类器的性能在Concordia数据库上进行评估。对于识别性能的相对比较,将CNN分类器与递归神经网络(RNN)分类器进行了比较,实验结果表明,分类率为98.4%。这表明CNN分类器优于RNN分类器以及在同一数据库上报道的其他分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1