An Unsupervised Learning Method to improve Legal Document Retrieval task at ALQAC 2022

D. Nguyen, Hieu Nguyen, Tung Le, Le-Minh Nguyen
{"title":"An Unsupervised Learning Method to improve Legal Document Retrieval task at ALQAC 2022","authors":"D. Nguyen, Hieu Nguyen, Tung Le, Le-Minh Nguyen","doi":"10.1109/KSE56063.2022.9953618","DOIUrl":null,"url":null,"abstract":"Document retrieval for domain-specific has been an important and challenging research in NLP, particularly legal documents. The main challenge in the legal domain is the close combination of specialized knowledge from experts, which makes the entire data collecting and evaluation procedure complex and time consuming. In this study, we propose a training data augmentation procedure and an unsupervised embedding learning method and apply it to the Legal Document Retrieval task at the Automated Legal Question Answering Competition 2022 (ALQAC 2022). In this task, our method outperformed current standard models and achieved competitive results at ALQAC 2022.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Document retrieval for domain-specific has been an important and challenging research in NLP, particularly legal documents. The main challenge in the legal domain is the close combination of specialized knowledge from experts, which makes the entire data collecting and evaluation procedure complex and time consuming. In this study, we propose a training data augmentation procedure and an unsupervised embedding learning method and apply it to the Legal Document Retrieval task at the Automated Legal Question Answering Competition 2022 (ALQAC 2022). In this task, our method outperformed current standard models and achieved competitive results at ALQAC 2022.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进alqac2022法律文件检索任务的无监督学习方法
面向特定领域的文档检索一直是自然语言处理领域的一个重要且具有挑战性的研究方向,法律文档的检索尤其如此。法律领域的主要挑战是专家专业知识的紧密结合,这使得整个数据收集和评估过程复杂而耗时。在这项研究中,我们提出了一种训练数据增强过程和一种无监督嵌入学习方法,并将其应用于2022年自动法律问答竞赛(ALQAC 2022)的法律文档检索任务。在这项任务中,我们的方法优于当前的标准模型,并在ALQAC 2022上取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DWEN: A novel method for accurate estimation of cell type compositions from bulk data samples Polygenic risk scores adaptation for Height in a Vietnamese population Sentiment Classification for Beauty-fashion Reviews An Automated Stub Method for Unit Testing C/C++ Projects Knowledge-based Problem Solving and Reasoning methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1