A maximum entropy Kalman filter for image compression

A. David, T. Aboulnasr
{"title":"A maximum entropy Kalman filter for image compression","authors":"A. David, T. Aboulnasr","doi":"10.1109/MWSCAS.2000.952896","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel compression method applicable to digital images. We employ Maximum Entropy (ME) as the optimization criterion and Kalman Filter (KF) as means of implementing the compressor. We will show for compression ratios comparable to those of traditional methods, such as JPEG, the high frequency components of the signal, i.e. texture and edges, are preserved. The motivation for using ME as the optimization criterion is to avoid over-smoothing of the signal associated with traditional methods based on Mean Square Error (MSE). The ME criterion is motivated by the fact that it does not make any assumptions, regarding the unobserved data.","PeriodicalId":437349,"journal":{"name":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2000.952896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel compression method applicable to digital images. We employ Maximum Entropy (ME) as the optimization criterion and Kalman Filter (KF) as means of implementing the compressor. We will show for compression ratios comparable to those of traditional methods, such as JPEG, the high frequency components of the signal, i.e. texture and edges, are preserved. The motivation for using ME as the optimization criterion is to avoid over-smoothing of the signal associated with traditional methods based on Mean Square Error (MSE). The ME criterion is motivated by the fact that it does not make any assumptions, regarding the unobserved data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像压缩的最大熵卡尔曼滤波
本文提出了一种适用于数字图像的压缩方法。我们采用最大熵(ME)作为优化准则,卡尔曼滤波(KF)作为实现压缩器的手段。我们将展示与传统方法(如JPEG)相比的压缩比,信号的高频成分(即纹理和边缘)被保留下来。使用ME作为优化准则的动机是为了避免传统的基于均方误差(MSE)的方法对信号的过度平滑。ME标准的动机是它没有对未观察到的数据做出任何假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high speed 3.3V current mode CMOS comparators with 10-b resolution Constraints implementation for IQML and MODE direction-of-arrival estimators A fast electric load forecasting using neural networks Noise reduction in speech signals using a TMS320C31 digital signal processor A high-frequency high-Q CMOS active inductor with DC bias control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1