Probabilistic load flow: A business park analysis, utilizing real world meter data

A. C. Melhorn, A. Dimitrovski, A. Keane
{"title":"Probabilistic load flow: A business park analysis, utilizing real world meter data","authors":"A. C. Melhorn, A. Dimitrovski, A. Keane","doi":"10.1109/PMAPS.2016.7763932","DOIUrl":null,"url":null,"abstract":"With the introduction of higher levels of renewables and demand response programs, traditional deterministic power system tools fall short of expectation. Probabilistic load flow takes into account the uncertainty, formed by inconsistent or unknown loads and generation, in the fundamental load flow analysis. Previous works have assumed the input variables to independent. This paper applies real world meter data into the probabilistic load flow simulation, making it no longer valid to just assume independence or total correlation between the inputs without further analysis. Meter data, in 5 or 15 minute intervals, of a typical southeastern United States business park are utilized for the analysis. Since the data are incomplete, several assumptions are made for the input variables. Two different load correlation scenarios are analyzed and the probabilistic load flow results are validated by comparison of available power flow and voltage meter data. The real world data test case further confirms the validity of the proposed probabilistic load flow technique which provides an accurate and practical way for finding the solution to stochastic problems occurring in power distribution systems.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7763932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the introduction of higher levels of renewables and demand response programs, traditional deterministic power system tools fall short of expectation. Probabilistic load flow takes into account the uncertainty, formed by inconsistent or unknown loads and generation, in the fundamental load flow analysis. Previous works have assumed the input variables to independent. This paper applies real world meter data into the probabilistic load flow simulation, making it no longer valid to just assume independence or total correlation between the inputs without further analysis. Meter data, in 5 or 15 minute intervals, of a typical southeastern United States business park are utilized for the analysis. Since the data are incomplete, several assumptions are made for the input variables. Two different load correlation scenarios are analyzed and the probabilistic load flow results are validated by comparison of available power flow and voltage meter data. The real world data test case further confirms the validity of the proposed probabilistic load flow technique which provides an accurate and practical way for finding the solution to stochastic problems occurring in power distribution systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率负荷流:一个商业园区分析,利用真实世界的仪表数据
随着更高水平的可再生能源和需求响应计划的引入,传统的确定性电力系统工具无法达到预期的效果。在基本潮流分析中,概率潮流考虑了由不一致或未知的负荷和产生所形成的不确定性。以前的研究假设输入变量是独立的。本文将现实世界的电表数据应用到概率潮流模拟中,使其不再仅仅假设输入之间的独立性或完全相关性而不进行进一步分析。以5或15分钟为间隔,利用典型的美国东南部商业园区的仪表数据进行分析。由于数据不完整,因此对输入变量做了几个假设。分析了两种不同的负荷相关情景,并通过对现有潮流和电压表数据的比较验证了概率潮流结果。实际数据测试案例进一步验证了所提出的概率潮流技术的有效性,为解决配电系统中出现的随机问题提供了一种准确实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1