Identifying salient utterances of online spoken documents using descriptive hypertext

Xiao-Dan Zhu, Siavash Kazemian, Gerald Penn
{"title":"Identifying salient utterances of online spoken documents using descriptive hypertext","authors":"Xiao-Dan Zhu, Siavash Kazemian, Gerald Penn","doi":"10.1109/SLT.2008.4777868","DOIUrl":null,"url":null,"abstract":"The Internet has become an important supply channel of spoken documents. Efficient ways of navigating their content are highly desirable. This paper aims to identify the most salient utterances from online spoken documents using relevant hypertext that encapsulates key information. Experimental results show that hypertext features are helpful when properly utilized and if the bit rates used to compress the spoken documents are reasonable.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet has become an important supply channel of spoken documents. Efficient ways of navigating their content are highly desirable. This paper aims to identify the most salient utterances from online spoken documents using relevant hypertext that encapsulates key information. Experimental results show that hypertext features are helpful when properly utilized and if the bit rates used to compress the spoken documents are reasonable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用描述性超文本识别在线口语文档的显著话语
互联网已成为口头文件的重要供应渠道。高效的内容导航方式是非常可取的。本文旨在利用包含关键信息的相关超文本从在线口语文档中识别出最突出的话语。实验结果表明,如果使用合理的比特率压缩语音文档,超文本特征是有帮助的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1