High Performance Parallel Algorithms for the Tucker Decomposition of Sparse Tensors

O. Kaya, B. Uçar
{"title":"High Performance Parallel Algorithms for the Tucker Decomposition of Sparse Tensors","authors":"O. Kaya, B. Uçar","doi":"10.1109/ICPP.2016.19","DOIUrl":null,"url":null,"abstract":"We investigate an efficient parallelization of a class of algorithms for the well-known Tucker decomposition of general N-dimensional sparse tensors. The targeted algorithms are iterative and use the alternating least squares method. At each iteration, for each dimension of an N-dimensional input tensor, the following operations are performed: (i) the tensor is multiplied with (N - 1) matrices (TTMc step), (ii) the product is then converted to a matrix, and (iii) a few leading left singular vectors of the resulting matrix are computed (TRSVD step) to update one of the matrices for the next TTMc step. We propose an efficient parallelization of these algorithms for the current parallel platforms with multicore nodes. We discuss a set of preprocessing steps which takes all computational decisions out of the main iteration of the algorithm and provides an intuitive shared-memory parallelism for the TTM and TRSVD steps. We propose a coarse and a fine-grain parallel algorithm in a distributed memory environment, investigate data dependencies, and identify efficient communication schemes. We demonstrate how the computation of singular vectors in the TRSVD step can be carried out efficiently following the TTMc step. Finally, we develop a hybrid MPI-OpenMP implementation of the overall algorithm and report scalability results on up to 4096 cores on 256 nodes of an IBM BlueGene/Q supercomputer.","PeriodicalId":409991,"journal":{"name":"2016 45th International Conference on Parallel Processing (ICPP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 45th International Conference on Parallel Processing (ICPP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2016.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

We investigate an efficient parallelization of a class of algorithms for the well-known Tucker decomposition of general N-dimensional sparse tensors. The targeted algorithms are iterative and use the alternating least squares method. At each iteration, for each dimension of an N-dimensional input tensor, the following operations are performed: (i) the tensor is multiplied with (N - 1) matrices (TTMc step), (ii) the product is then converted to a matrix, and (iii) a few leading left singular vectors of the resulting matrix are computed (TRSVD step) to update one of the matrices for the next TTMc step. We propose an efficient parallelization of these algorithms for the current parallel platforms with multicore nodes. We discuss a set of preprocessing steps which takes all computational decisions out of the main iteration of the algorithm and provides an intuitive shared-memory parallelism for the TTM and TRSVD steps. We propose a coarse and a fine-grain parallel algorithm in a distributed memory environment, investigate data dependencies, and identify efficient communication schemes. We demonstrate how the computation of singular vectors in the TRSVD step can be carried out efficiently following the TTMc step. Finally, we develop a hybrid MPI-OpenMP implementation of the overall algorithm and report scalability results on up to 4096 cores on 256 nodes of an IBM BlueGene/Q supercomputer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏张量Tucker分解的高性能并行算法
我们研究了一类算法的有效并行化,用于一般n维稀疏张量的著名的Tucker分解。目标算法是迭代的,使用交替最小二乘法。在每次迭代中,对于N维输入张量的每个维度,执行以下操作:(i)张量与(N - 1)个矩阵相乘(TTMc步骤),(ii)然后将乘积转换为矩阵,(iii)计算结果矩阵的几个前导左奇异向量(TRSVD步骤)以更新其中一个矩阵,用于下一个TTMc步骤。针对当前多核节点并行平台,我们提出了一种有效的并行化算法。我们讨论了一组预处理步骤,这些步骤将所有计算决策从算法的主迭代中取出,并为TTM和TRSVD步骤提供直观的共享内存并行性。在分布式存储环境下,我们提出了一种粗粒度和细粒度并行算法,研究了数据依赖关系,并确定了有效的通信方案。我们演示了如何在TTMc步骤之后有效地进行TRSVD步骤中的奇异向量计算。最后,我们开发了整体算法的MPI-OpenMP混合实现,并报告了IBM BlueGene/Q超级计算机256个节点上多达4096个核的可扩展性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel k-Means++ for Multiple Shared-Memory Architectures RCHC: A Holistic Runtime System for Concurrent Heterogeneous Computing Partial Flattening: A Compilation Technique for Irregular Nested Parallelism on GPGPUs Improving RAID Performance Using an Endurable SSD Cache PARVMEC: An Efficient, Scalable Implementation of the Variational Moments Equilibrium Code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1