Understanding and identifying the use of emotes in toxic chat on Twitch

Q1 Social Sciences Online Social Networks and Media Pub Date : 2022-01-01 DOI:10.1016/j.osnem.2021.100180
Jaeheon Kim , Donghee Yvette Wohn , Meeyoung Cha
{"title":"Understanding and identifying the use of emotes in toxic chat on Twitch","authors":"Jaeheon Kim ,&nbsp;Donghee Yvette Wohn ,&nbsp;Meeyoung Cha","doi":"10.1016/j.osnem.2021.100180","DOIUrl":null,"url":null,"abstract":"<div><p>The latest advances in NLP (natural language processing) have led to the launch of the much needed machine-driven toxic chat detection. Nevertheless, people continuously find new forms of hateful expressions that are easily identified by humans, but not by machines. One such common expression is the mix of text and emotes, a type of visual toxic chat that is increasingly used to evade algorithmic moderation and a trend that is an under-studied aspect of the problem of online toxicity. This research analyzes chat conversations from the popular streaming platform Twitch to understand the varied types of visual toxic chat. Emotes were sometimes used to replace a letter, seek attention, or for emotional expression. We created a labeled dataset that contains 29,721 cases of emotes replacing letters. Based on the dataset, we built a neural network classifier and identified visual toxic chat that would otherwise be undetected through traditional methods and caught an additional 1.3% examples of toxic chat out of 15 million chat utterances.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468696421000598/pdfft?md5=74d9b0d4cdd5859c36ea8a0c200c176d&pid=1-s2.0-S2468696421000598-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696421000598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

The latest advances in NLP (natural language processing) have led to the launch of the much needed machine-driven toxic chat detection. Nevertheless, people continuously find new forms of hateful expressions that are easily identified by humans, but not by machines. One such common expression is the mix of text and emotes, a type of visual toxic chat that is increasingly used to evade algorithmic moderation and a trend that is an under-studied aspect of the problem of online toxicity. This research analyzes chat conversations from the popular streaming platform Twitch to understand the varied types of visual toxic chat. Emotes were sometimes used to replace a letter, seek attention, or for emotional expression. We created a labeled dataset that contains 29,721 cases of emotes replacing letters. Based on the dataset, we built a neural network classifier and identified visual toxic chat that would otherwise be undetected through traditional methods and caught an additional 1.3% examples of toxic chat out of 15 million chat utterances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解和识别在Twitch上的有毒聊天中表情符号的使用
NLP(自然语言处理)的最新进展导致了急需的机器驱动的有毒聊天检测的推出。然而,人们不断发现新的可恨的表达方式,这些表达方式很容易被人类识别,而不是被机器识别。其中一个常见的表达是文字和表情的混合,这是一种视觉上的有毒聊天,越来越多地用于逃避算法审核,这种趋势是网络毒性问题的一个未被充分研究的方面。本研究分析了流行流媒体平台Twitch的聊天对话,以了解各种类型的视觉有毒聊天。表情符号有时被用来代替信件、寻求关注或表达情感。我们创建了一个有标签的数据集,其中包含29,721个表情代替字母的案例。基于该数据集,我们构建了一个神经网络分类器,并识别了通过传统方法无法检测到的视觉有毒聊天,并从1500万条聊天话语中捕获了额外的1.3%的有毒聊天示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1