MMM-PHC: A Particle-Based Multi-Agent Learning Algorithm

Philip R. Cook, M. Goodrich
{"title":"MMM-PHC: A Particle-Based Multi-Agent Learning Algorithm","authors":"Philip R. Cook, M. Goodrich","doi":"10.1109/ICMLA.2010.15","DOIUrl":null,"url":null,"abstract":"Learning is one way to determine how agents should act, but learning in multi-agent systems is more difficult than in single-agent systems because other learning agents modify their behavior. We introduce a particle-based algorithm called MMM-PHC. MMM-PHC promotes convergence to Nash equilibria in matrix games using the ideas of maxim in strategies and partial commitment. Partial commitment is implemented by restricting policies to a simplex. Simulations show that MMM-PHC performs on a larger class of games than WoLFPHC.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning is one way to determine how agents should act, but learning in multi-agent systems is more difficult than in single-agent systems because other learning agents modify their behavior. We introduce a particle-based algorithm called MMM-PHC. MMM-PHC promotes convergence to Nash equilibria in matrix games using the ideas of maxim in strategies and partial commitment. Partial commitment is implemented by restricting policies to a simplex. Simulations show that MMM-PHC performs on a larger class of games than WoLFPHC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子的多智能体学习算法
学习是确定智能体应该如何行动的一种方法,但在多智能体系统中学习比在单智能体系统中更难,因为其他学习智能体会修改它们的行为。我们介绍了一种基于粒子的算法,称为MMM-PHC。hmm - phc利用策略的最大化和部分承诺的思想促进矩阵博弈收敛到纳什均衡。部分承诺是通过将策略限制到一个简单体来实现的。仿真表明,mm - phc比WoLFPHC在更大的游戏类别上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1