Dual MPC for Adaptive Cruise Control with Unknown Road Profile

Zhaolun Li, Jingjing Jiang, Wen-Hua Chen
{"title":"Dual MPC for Adaptive Cruise Control with Unknown Road Profile","authors":"Zhaolun Li, Jingjing Jiang, Wen-Hua Chen","doi":"10.1109/ICM54990.2023.10102091","DOIUrl":null,"url":null,"abstract":"Inspired by the recent work on dual control for exploration and exploitation (DCEE), this paper presents a solution to adaptive cruise control problems via a dual control approach. Different from other adaptive controllers, the proposed dual model predictive control not only uses the current and future inputs to keep a constant headway distance between the leading vehicle and the ego vehicle but also tries to reduce the uncertainty of state estimation by actively learning the surrounding environment as well, which leads to faster convergence of the estimated parameters and better reference tracking performance. The simulation results demonstrate that the proposed dual control framework outperforms a conventional model predictive controller with disturbance observer for adaptive cruise control with unknown road grade.","PeriodicalId":416176,"journal":{"name":"2023 IEEE International Conference on Mechatronics (ICM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM54990.2023.10102091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the recent work on dual control for exploration and exploitation (DCEE), this paper presents a solution to adaptive cruise control problems via a dual control approach. Different from other adaptive controllers, the proposed dual model predictive control not only uses the current and future inputs to keep a constant headway distance between the leading vehicle and the ego vehicle but also tries to reduce the uncertainty of state estimation by actively learning the surrounding environment as well, which leads to faster convergence of the estimated parameters and better reference tracking performance. The simulation results demonstrate that the proposed dual control framework outperforms a conventional model predictive controller with disturbance observer for adaptive cruise control with unknown road grade.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双MPC自适应巡航控制与未知的道路轮廓
受近年来勘探开发双控制(dual control for exploration and development, DCEE)研究的启发,本文提出了一种基于双控制的自适应巡航控制方法。与其他自适应控制器不同的是,本文提出的双模型预测控制不仅利用当前和未来的输入来保持前导车辆与自我车辆之间的车头距恒定,而且还试图通过主动学习周围环境来减少状态估计的不确定性,从而使估计参数收敛更快,具有更好的参考跟踪性能。仿真结果表明,对于未知路面坡度的自适应巡航控制,所提出的双控制框架优于传统的带有干扰观测器的模型预测控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sliding Mode-Based Design of Unified Force and Position Control for Series Elastic Actuator Frequency-domain Analysis for Infinite Resets Systems* Intelligent Static Calibration of Industrial Robots using Artificial Bee Colony Algorithm Energy Localization in Spring-Motor Coupling System by Switching Mass Control Drowsy Driver Detection System For Poor Light Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1