Double-layer embroidery strategy for fabrication of textile antennas with improved efficiency

R. Simorangkir, Yang Yang, K. Esselle
{"title":"Double-layer embroidery strategy for fabrication of textile antennas with improved efficiency","authors":"R. Simorangkir, Yang Yang, K. Esselle","doi":"10.1109/ANTEM.2016.7550169","DOIUrl":null,"url":null,"abstract":"In this paper, two approaches in fabricating textile antennas with double-layer embroidery technique, as one of the way to increase the textile antennas' efficiency, are discussed and compared. In the first approach, a conductive thread is used for both the upper and lower (bobbin) threads, while in the second, the conductive thread is used only for the lower thread but the embroidery process is done twice. To study the effect of each approach, two embroidered rectangular patch antennas operating at 2.45 GHz ISM band were fabricated and measured. The embroidered layers were then placed on top of a 3.175 mm thick Rogers TMM3 substrate, tested, and compared with an etched copper version of the patch antenna. The results show that both approaches give a comparable radiation performance to the etched copper version with a slightly higher efficiency in the first one. However, the second approach allows faster and cost efficient fabrication.","PeriodicalId":447985,"journal":{"name":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEM.2016.7550169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, two approaches in fabricating textile antennas with double-layer embroidery technique, as one of the way to increase the textile antennas' efficiency, are discussed and compared. In the first approach, a conductive thread is used for both the upper and lower (bobbin) threads, while in the second, the conductive thread is used only for the lower thread but the embroidery process is done twice. To study the effect of each approach, two embroidered rectangular patch antennas operating at 2.45 GHz ISM band were fabricated and measured. The embroidered layers were then placed on top of a 3.175 mm thick Rogers TMM3 substrate, tested, and compared with an etched copper version of the patch antenna. The results show that both approaches give a comparable radiation performance to the etched copper version with a slightly higher efficiency in the first one. However, the second approach allows faster and cost efficient fabrication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高纺织天线制作效率的双层刺绣策略
本文讨论并比较了两种采用双层刺绣技术制作纺织天线的方法,这是提高纺织天线效率的一种方法。在第一种方法中,导电线用于上下线(线轴),而在第二种方法中,导电线仅用于下线,但刺绣过程要进行两次。为了研究每种方法的效果,制作了两个工作在2.45 GHz ISM频段的绣花矩形贴片天线并进行了测量。然后将刺绣层放置在3.175 mm厚的Rogers TMM3基板上,进行测试,并与蚀刻铜版本的贴片天线进行比较。结果表明,两种方法的辐射性能都与蚀刻铜版本相当,第一种方法的效率略高。然而,第二种方法允许更快和更低成本的制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impedance matching of a frequency- and pattern-reconfigurable antenna An electrically small antenna fully embedded in an LTCC substrate suitable for SoP integration An antenna for switch beam, multi-beam millimetre-wave cellular systems Optimal wave focusing in complex environments A large ESPAR with dielectric resonator subarrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1