Self-Organized Hierarchical Methods for Time Series Forecasting

Fuad Mousse Abinader Jr., A. C. S. D. Queiroz, Daniel W. Honda
{"title":"Self-Organized Hierarchical Methods for Time Series Forecasting","authors":"Fuad Mousse Abinader Jr., A. C. S. D. Queiroz, Daniel W. Honda","doi":"10.1109/ICTAI.2011.180","DOIUrl":null,"url":null,"abstract":"Time series forecasting with the use of Artificial Neural Networks (ANN), in special with self-organized maps (SOM), has been explored in the literature with good results. One good strategy for improving computational cost and specialization of SOMs in general is constructing it via hierarchical structures. This work presents four different heuristics for constructing hierarchical SOMs for time series prediction, evaluating their computational cost and forecast precision and providing insight on future enhancements.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Time series forecasting with the use of Artificial Neural Networks (ANN), in special with self-organized maps (SOM), has been explored in the literature with good results. One good strategy for improving computational cost and specialization of SOMs in general is constructing it via hierarchical structures. This work presents four different heuristics for constructing hierarchical SOMs for time series prediction, evaluating their computational cost and forecast precision and providing insight on future enhancements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间序列预测的自组织分层方法
利用人工神经网络(ANN),特别是自组织映射(SOM)进行时间序列预测,已经在文献中进行了探索,并取得了良好的结果。一般来说,改善som计算成本和专业化的一个好策略是通过分层结构来构建它。这项工作提出了四种不同的启发式方法,用于构建用于时间序列预测的分层som,评估其计算成本和预测精度,并提供对未来增强的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1