Multitaper Spectrogram for Classification of Speech and Music With Pretrained Audio Neural Networks

G.B Rakshith, K. Narendra, Sanjeev Gurugopinath
{"title":"Multitaper Spectrogram for Classification of Speech and Music With Pretrained Audio Neural Networks","authors":"G.B Rakshith, K. Narendra, Sanjeev Gurugopinath","doi":"10.1109/DISCOVER52564.2021.9663695","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate the viability of multitaper (MT) features for classification of s peech and music with pretrained audio neural networks (PANN). Among several well-known features for audio tagging, log-mel is widely-used. Therefore, log-mel has been used to train and establish a near-perfect accurate PANN for audio tagging. For the classification problem at hand, we study the performance of MT numerator group delay (MT-NGD) and MT magnitude (MT-Mag) spectral features and compare it with the log-mel feature. Our experimental results on the MARSYAS speech and music database shows that the accuracy of the PANN converges faster as opposed to other features, when trained with MT-NGD spectrogram. Further, the multitaper representations are observed to be robust to the presence of noise in both speech and music.","PeriodicalId":413789,"journal":{"name":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DISCOVER52564.2021.9663695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we demonstrate the viability of multitaper (MT) features for classification of s peech and music with pretrained audio neural networks (PANN). Among several well-known features for audio tagging, log-mel is widely-used. Therefore, log-mel has been used to train and establish a near-perfect accurate PANN for audio tagging. For the classification problem at hand, we study the performance of MT numerator group delay (MT-NGD) and MT magnitude (MT-Mag) spectral features and compare it with the log-mel feature. Our experimental results on the MARSYAS speech and music database shows that the accuracy of the PANN converges faster as opposed to other features, when trained with MT-NGD spectrogram. Further, the multitaper representations are observed to be robust to the presence of noise in both speech and music.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预训练音频神经网络的多锥度谱图语音和音乐分类
在本文中,我们用预训练的音频神经网络(PANN)证明了多锥度(MT)特征用于语音和音乐分类的可行性。在几个众所周知的音频标记特性中,log-mel被广泛使用。因此,log-mel被用来训练和建立一个近乎完美的精确的音频标注PANN。对于手头的分类问题,我们研究了MT分子群延迟(MT- ngd)和MT数量级(MT- mag)谱特征的性能,并将其与对数特征进行了比较。我们在MARSYAS语音和音乐数据库上的实验结果表明,当使用MT-NGD谱图训练时,与其他特征相比,PANN的准确性收敛得更快。此外,观察到多锥度表示对语音和音乐中存在的噪声都具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biosensors for the Detection of Toxic Contaminants from Water Reservoirs Essential for Potable and Agriculture Needs: A Review High Performance Variable Precision Multiplier and Accumulator Unit for Digital Filter Applications PCA and SVM Technique for Epileptic Seizure Classification Design and Analysis of Self-write-terminated Hybrid STT-MTJ/CMOS Logic Gates using LIM Architecture Joint Trajectory Tracking of Two- link Flexible Manipulator in Presence of Matched Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1