Community deception in weighted networks

Valeria Fionda, G. Pirrò
{"title":"Community deception in weighted networks","authors":"Valeria Fionda, G. Pirrò","doi":"10.1145/3487351.3488337","DOIUrl":null,"url":null,"abstract":"Techniques to hide a community from community detection algorithms are emerging as a new way to protect the privacy of users. Existing techniques either adapt optimization criteria derived from community detection (e.g., minimizing instead of maximizing modularity) or define new ones (e.g., community safeness) to identify a set of updates (e.g., edge addition/deletions) that deceive community detection algorithms from recovering the original structure of a target community C. However, all existing approaches do not take into account the fact that network's edges can be weighted to take into account node similarity or relation strength. The goal of this paper is to present SECRETORUM, a novel community deception approach for community deception in weighted networks.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Techniques to hide a community from community detection algorithms are emerging as a new way to protect the privacy of users. Existing techniques either adapt optimization criteria derived from community detection (e.g., minimizing instead of maximizing modularity) or define new ones (e.g., community safeness) to identify a set of updates (e.g., edge addition/deletions) that deceive community detection algorithms from recovering the original structure of a target community C. However, all existing approaches do not take into account the fact that network's edges can be weighted to take into account node similarity or relation strength. The goal of this paper is to present SECRETORUM, a novel community deception approach for community deception in weighted networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加权网络中的社区欺骗
在社区检测算法中隐藏社区的技术是一种保护用户隐私的新方法。现有的技术要么适应从社区检测中得到的优化标准(例如,最小化而不是最大化模块化),要么定义新的标准(例如,社区安全性)来识别一组更新(例如,边缘添加/删除),这些更新欺骗了社区检测算法,使其无法恢复目标社区c的原始结构。所有现有的方法都没有考虑到网络的边缘可以加权以考虑节点的相似性或关系强度。本文的目标是提出一种新的社区欺骗方法SECRETORUM,用于加权网络中的社区欺骗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1