Word Segmentation From Phoneme Sequences Based On Pitman-Yor Semi-Markov Model Exploiting Subword Information

Ryu Takeda, Kazunori Komatani, Alexander I. Rudnicky
{"title":"Word Segmentation From Phoneme Sequences Based On Pitman-Yor Semi-Markov Model Exploiting Subword Information","authors":"Ryu Takeda, Kazunori Komatani, Alexander I. Rudnicky","doi":"10.1109/SLT.2018.8639607","DOIUrl":null,"url":null,"abstract":"Word segmentation from phoneme sequences is essential to identify unknown words -of-vocabulary; OOV) in spoken dialogues. The Pitman-Yor semi-Markov model (PYSMM) is used for word segmentation that handles dynamic increase in vocabularies. The obtained vocabularies, however, still include meaningless entries due to insufficient cues for phoneme sequences. We focus here on using subword information to capture patterns as “words.” We propose 1) a model based on subword N-gram and subword estimation using a vocabulary set, and 2) posterior fusion of the results of a PYSMM and our model to take advantage of both. Our experiments showed 1) the potential of using subword information for OOV acquisition, and 2) that our method outperformed the PYSMM by 1.53 and 1.07 in terms of the F-measure of the obtained OOV set for English and Japanese corpora, respectively.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Word segmentation from phoneme sequences is essential to identify unknown words -of-vocabulary; OOV) in spoken dialogues. The Pitman-Yor semi-Markov model (PYSMM) is used for word segmentation that handles dynamic increase in vocabularies. The obtained vocabularies, however, still include meaningless entries due to insufficient cues for phoneme sequences. We focus here on using subword information to capture patterns as “words.” We propose 1) a model based on subword N-gram and subword estimation using a vocabulary set, and 2) posterior fusion of the results of a PYSMM and our model to take advantage of both. Our experiments showed 1) the potential of using subword information for OOV acquisition, and 2) that our method outperformed the PYSMM by 1.53 and 1.07 in terms of the F-measure of the obtained OOV set for English and Japanese corpora, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于利用子词信息的Pitman-Yor半马尔可夫模型的音素分词
从音素序列中分词是识别未知词汇的关键;OOV)在口语对话中。Pitman-Yor半马尔可夫模型(PYSMM)用于分词,处理词汇量的动态增长。然而,由于对音素序列的线索不足,所获得的词汇表中仍有无意义的条目。我们在这里着重于使用子词信息将模式捕获为“词”。我们提出了1)基于子词N-gram和使用词汇集估计子词的模型,以及2)利用PYSMM和我们的模型的结果进行后验融合。我们的实验表明1)使用子词信息获取OOV的潜力,2)我们的方法在获得的英语和日语语料库的OOV集的f度量方面分别比PYSMM方法高1.53和1.07。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence Teacher-Student Training of Acoustic Models for Automatic Free Speaking Language Assessment Leveraging Sequence-to-Sequence Speech Synthesis for Enhancing Acoustic-to-Word Speech Recognition Dynamic Extension of ASR Lexicon Using Wikipedia Data Detection and Calibration of Whisper for Speaker Recognition Out-of-Domain Slot Value Detection for Spoken Dialogue Systems with Context Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1