A Context-aware Modeling Framework for Pervasive Applications

Hongyan Mao, Ningkang Jiang, Wen Su, Linpeng Huang
{"title":"A Context-aware Modeling Framework for Pervasive Applications","authors":"Hongyan Mao, Ningkang Jiang, Wen Su, Linpeng Huang","doi":"10.1109/CSC.2012.14","DOIUrl":null,"url":null,"abstract":"It is a challenge to recommend Web services under multiple contexts. To address this challenge, we propose a context-aware collaborative filtering (CaCF) approach for service recommendation. Three types of contextual information, i.e. time, location and interest of user, are considered. In this approach, users' interests are extracted from service invocation records and represented as term-weight vectors. Neighbors are chosen according to the Cosine similarities of these vectors. Then, neighbors are filtered into close neighbors by location and time. At last, these close neighbors recommend service to a target user. We evaluate our method through comparing with other service recommendation approaches. The experimental results show that it achieves better precision and satisfaction rate than other two methods.","PeriodicalId":183800,"journal":{"name":"2012 International Conference on Cloud and Service Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Cloud and Service Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSC.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is a challenge to recommend Web services under multiple contexts. To address this challenge, we propose a context-aware collaborative filtering (CaCF) approach for service recommendation. Three types of contextual information, i.e. time, location and interest of user, are considered. In this approach, users' interests are extracted from service invocation records and represented as term-weight vectors. Neighbors are chosen according to the Cosine similarities of these vectors. Then, neighbors are filtered into close neighbors by location and time. At last, these close neighbors recommend service to a target user. We evaluate our method through comparing with other service recommendation approaches. The experimental results show that it achieves better precision and satisfaction rate than other two methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向普适应用的上下文感知建模框架
在多种上下文中推荐Web服务是一项挑战。为了解决这一挑战,我们提出了一种用于服务推荐的上下文感知协同过滤(CaCF)方法。三种类型的上下文信息,即时间,地点和用户的兴趣,被考虑。在这种方法中,用户的兴趣从服务调用记录中提取出来,并表示为术语权重向量。根据这些向量的余弦相似度选择邻居。然后,根据位置和时间将邻居过滤成近邻。最后,这些近邻向目标用户推荐服务。我们通过比较其他服务推荐方法来评估我们的方法。实验结果表明,与其他两种方法相比,该方法具有更高的精度和满意率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Task Scheduling Algorithm in Hybrid Cloud Environment A Resource-Oriented Middleware Framework for Heterogeneous Internet of Things Cloud Storage-oriented Secure Information Gateway A Fast Privacy-Preserving Multi-keyword Search Scheme on Cloud Data Combined Cache Policy for Service Workflow Execution Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1