Correlation based fingerprint liveness detection

Z. Akhtar, C. Micheloni, G. Foresti
{"title":"Correlation based fingerprint liveness detection","authors":"Z. Akhtar, C. Micheloni, G. Foresti","doi":"10.1109/ICB.2015.7139054","DOIUrl":null,"url":null,"abstract":"Fingerprint recognition systems are vulnerable to spoof attacks, which consist in presenting forged fingerprints to the sensor. Typical anti-spoofing mechanism is fingerprint liveness detection. Existing liveness detection methods are still not robust to spoofing materials, datasets and sensor variations. In particular, the performance of a liveness detection algorithm remarkably drops upon encountering spoof fabrication materials that were not used during the training stage. Likewise, a quintessential liveness detection method needs to be adapted and retrained to new spoofing materials, datasets and each sensor used for acquiring the fingerprints. In this paper, we propose a framework that first performs correlation mapping between live and spoof fingerprints and then uses a discriminative-generative classification scheme for spoof detection. Partial Least Squares (PLS) is utilized to learn the correlations. While, support vector machine (SVM) is combined with three generative classifiers, namely Gaussian Mixture Model, Gaussian Copula, and Quadratic Discriminant Analysis, for final classification. Experiments on the publicly available LivDet2011 and LivDet2013 datasets, show that the proposed method outperforms the existing methods alongside cross-spoof material and cross-sensor techniques.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Fingerprint recognition systems are vulnerable to spoof attacks, which consist in presenting forged fingerprints to the sensor. Typical anti-spoofing mechanism is fingerprint liveness detection. Existing liveness detection methods are still not robust to spoofing materials, datasets and sensor variations. In particular, the performance of a liveness detection algorithm remarkably drops upon encountering spoof fabrication materials that were not used during the training stage. Likewise, a quintessential liveness detection method needs to be adapted and retrained to new spoofing materials, datasets and each sensor used for acquiring the fingerprints. In this paper, we propose a framework that first performs correlation mapping between live and spoof fingerprints and then uses a discriminative-generative classification scheme for spoof detection. Partial Least Squares (PLS) is utilized to learn the correlations. While, support vector machine (SVM) is combined with three generative classifiers, namely Gaussian Mixture Model, Gaussian Copula, and Quadratic Discriminant Analysis, for final classification. Experiments on the publicly available LivDet2011 and LivDet2013 datasets, show that the proposed method outperforms the existing methods alongside cross-spoof material and cross-sensor techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相关性的指纹活性检测
指纹识别系统容易受到欺骗攻击,这包括向传感器提供伪造的指纹。典型的防欺骗机制是指纹活动性检测。现有的活体检测方法对欺骗材料、数据集和传感器的变化仍然不具有鲁棒性。特别是,当遇到训练阶段未使用的欺骗制造材料时,活动性检测算法的性能显着下降。同样,一个典型的活体检测方法需要调整和重新训练,以适应新的欺骗材料、数据集和用于获取指纹的每个传感器。在本文中,我们提出了一个框架,该框架首先在真实指纹和欺骗指纹之间进行相关映射,然后使用判别生成分类方案进行欺骗检测。利用偏最小二乘(PLS)来学习相关性。支持向量机(SVM)结合高斯混合模型(Gaussian Mixture Model)、高斯Copula和二次判别分析(Quadratic Discriminant Analysis)三种生成分类器进行最终分类。在公开可用的LivDet2011和LivDet2013数据集上的实验表明,该方法优于现有的交叉欺骗材料和交叉传感器技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1