{"title":"A Deployable Online Optimization Framework for EV Smart Charging with Real-World Test Cases","authors":"Nathaniel Tucker, M. Alizadeh","doi":"10.1109/SmartGridComm52983.2022.9961029","DOIUrl":null,"url":null,"abstract":"We present a customizable online optimization framework for real-time EV smart charging to be readily implemented at real large-scale charging facilities. Notably, due to real-world constraints, we designed our framework around 3 main requirements. First, the smart charging strategy is readily deployable and customizable for a wide-array of facilities, infrastructure, objectives, and constraints. Second, the online optimization framework can be easily modified to operate with or without user input for energy request amounts and/or departure time estimates which allows our framework to be implemented on standard chargers with 1-way communication or newer charg-ers with 2-way communication. Third, our online optimization framework outperforms other real-time strategies (including first-come- first-serve, least-laxity-first, earliest-deadline-first, etc.) in multiple real-world test cases with various objectives. We showcase our framework with two real-world test cases with charging session data sourced from SLAC and Google campuses in the Bay Area.","PeriodicalId":252202,"journal":{"name":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm52983.2022.9961029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present a customizable online optimization framework for real-time EV smart charging to be readily implemented at real large-scale charging facilities. Notably, due to real-world constraints, we designed our framework around 3 main requirements. First, the smart charging strategy is readily deployable and customizable for a wide-array of facilities, infrastructure, objectives, and constraints. Second, the online optimization framework can be easily modified to operate with or without user input for energy request amounts and/or departure time estimates which allows our framework to be implemented on standard chargers with 1-way communication or newer charg-ers with 2-way communication. Third, our online optimization framework outperforms other real-time strategies (including first-come- first-serve, least-laxity-first, earliest-deadline-first, etc.) in multiple real-world test cases with various objectives. We showcase our framework with two real-world test cases with charging session data sourced from SLAC and Google campuses in the Bay Area.