A new approach of crowd density estimation

Wei Li, Xiaojuan Wu, Koichi Matsumoto, Hua-An Zhao
{"title":"A new approach of crowd density estimation","authors":"Wei Li, Xiaojuan Wu, Koichi Matsumoto, Hua-An Zhao","doi":"10.1109/TENCON.2010.5685978","DOIUrl":null,"url":null,"abstract":"Crowd density estimation is important in crowd analysis, this paper proposes a new approach used for crowd density estimation. First, background is removed by using a combination of optical flow and background subtract methods. Then according to texture analysis, a set of new feature is extracted from foreground image. Finally, a self-organizing map neural network is used for classifying different crowds. Some experimental results show compared to former crowd estimation methods, the proposed approach can carry out the estimation more accurately, the rate of true classification is 85.6% on a data set of 500 images.","PeriodicalId":101683,"journal":{"name":"TENCON 2010 - 2010 IEEE Region 10 Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2010 - 2010 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2010.5685978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Crowd density estimation is important in crowd analysis, this paper proposes a new approach used for crowd density estimation. First, background is removed by using a combination of optical flow and background subtract methods. Then according to texture analysis, a set of new feature is extracted from foreground image. Finally, a self-organizing map neural network is used for classifying different crowds. Some experimental results show compared to former crowd estimation methods, the proposed approach can carry out the estimation more accurately, the rate of true classification is 85.6% on a data set of 500 images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的人群密度估计方法
人群密度估计在人群分析中占有重要地位,本文提出了一种新的人群密度估计方法。首先,采用光流和背景相减相结合的方法去除背景。然后根据纹理分析,从前景图像中提取一组新的特征。最后,利用自组织映射神经网络对不同的人群进行分类。实验结果表明,与以往的人群估计方法相比,该方法可以更准确地进行估计,在500张图像的数据集上,真实分类率达到85.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Change of EEG activity by repetitive Transcranial Magnetic Stimulation Study of SVC traffic multicast over WiMAX network Grain filtering in MILC and its impact on performance of n- and p-channel TFTs Dependence of magnetization switching property with microwave assistance on anisotropy field for ECC nano-pillar A compact 3D descriptor in ROI for human action recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1