Analysis and Comparison of Deep Learning Networks for Supporting Sentiment Mining in Text Corpora

Teresa Alcamo, A. Cuzzocrea, Giosuè Lo Bosco, G. Pilato, Daniele Schicchi
{"title":"Analysis and Comparison of Deep Learning Networks for Supporting Sentiment Mining in Text Corpora","authors":"Teresa Alcamo, A. Cuzzocrea, Giosuè Lo Bosco, G. Pilato, Daniele Schicchi","doi":"10.1145/3428757.3429144","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the problem of the irony and sarcasm detection for the Italian language to contribute to the enrichment of the sentiment analysis field. We analyze and compare five deep-learning systems. Results show the high suitability of such systems to face the problem by achieving 93% of F1-Score in the best case. Furthermore, we briefly analyze the model architectures in order to choose the best compromise between performances and complexity.","PeriodicalId":212557,"journal":{"name":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3428757.3429144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we tackle the problem of the irony and sarcasm detection for the Italian language to contribute to the enrichment of the sentiment analysis field. We analyze and compare five deep-learning systems. Results show the high suitability of such systems to face the problem by achieving 93% of F1-Score in the best case. Furthermore, we briefly analyze the model architectures in order to choose the best compromise between performances and complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持文本语料库情感挖掘的深度学习网络分析与比较
在本文中,我们解决了意大利语的反讽和讽刺检测问题,为情感分析领域的丰富做出了贡献。我们分析和比较了五个深度学习系统。结果表明,在最佳情况下,该系统达到了93%的F1-Score,具有很高的适用性。此外,我们简要分析了模型体系结构,以便在性能和复杂性之间选择最佳折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tailored Graph Embeddings for Entity Alignment on Historical Data CommunityCare A Comparison of Two Database Partitioning Approaches that Support Taxonomy-Based Query Answering Prediction of Cesarean Childbirth using Ensemble Machine Learning Methods Interoperability of Semantically-Enabled Web Services on the WoT: Challenges and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1