KinRes: depth sensor noise reduction in contactless respiratory monitoring

Kaveh Bakhtiyari, J. Ziegler, H. Husain
{"title":"KinRes: depth sensor noise reduction in contactless respiratory monitoring","authors":"Kaveh Bakhtiyari, J. Ziegler, H. Husain","doi":"10.1145/3154862.3154896","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel reliable solution, named KinRes, to extract contactless respiratory signal via an IR-3D Depth sensor (Microsoft Kinect 2) on human subjects interacting with a computer. The depth sensor is very sensitive to the minor changes so that the body movements impose noise in the depth values. Previous studies on contactless respiratory concentrated solely on the still laid subjects on a surface to minimize the possible artifacts. To overcome these limitations, we low-pass filter the extracted signal. Then, a greedy self-correction algorithm is developed to correct the false detected peaks & troughs. The processed signal is validated with a simultaneous signal from a respiratory belt. This framework improved the accuracy of the signal by 24% for the subjects in a normal sitting position.","PeriodicalId":200810,"journal":{"name":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3154862.3154896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel reliable solution, named KinRes, to extract contactless respiratory signal via an IR-3D Depth sensor (Microsoft Kinect 2) on human subjects interacting with a computer. The depth sensor is very sensitive to the minor changes so that the body movements impose noise in the depth values. Previous studies on contactless respiratory concentrated solely on the still laid subjects on a surface to minimize the possible artifacts. To overcome these limitations, we low-pass filter the extracted signal. Then, a greedy self-correction algorithm is developed to correct the false detected peaks & troughs. The processed signal is validated with a simultaneous signal from a respiratory belt. This framework improved the accuracy of the signal by 24% for the subjects in a normal sitting position.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非接触式呼吸监测中的深度传感器降噪
本文提出了一种新颖可靠的解决方案,名为KinRes,通过IR-3D深度传感器(微软Kinect 2)在与计算机交互的人类受试者上提取非接触式呼吸信号。深度传感器对微小的变化非常敏感,因此人体运动在深度值中施加噪声。以前对非接触呼吸的研究仅仅集中在静止放置在表面上的受试者上,以尽量减少可能的伪影。为了克服这些限制,我们对提取的信号进行低通滤波。然后,提出了一种贪婪自校正算法来校正误检的波峰和波谷。处理后的信号与来自呼吸带的同步信号进行验证。对于处于正常坐姿的受试者,该框架将信号的准确性提高了24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gamification mechanics for behavioral change: a systematic review and proposed taxonomy Scaling health analytics to millions without compromising privacy using deep distributed behavior models New frontiers for pervasive telemedicine: from data science in the wild to HoloPresence Intergenerational sharing of health data among family members Automated speech-based screening for alzheimer's disease in a care service scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1