Electromigration extrusion kinetics of Cu interconnects

Lijuan Zhang, Ping-Chuan Wang, Xiao Hu Liu, P. McLaughlin, R. Filippi, Baozhen Li, J. Bao
{"title":"Electromigration extrusion kinetics of Cu interconnects","authors":"Lijuan Zhang, Ping-Chuan Wang, Xiao Hu Liu, P. McLaughlin, R. Filippi, Baozhen Li, J. Bao","doi":"10.1109/IRPS.2013.6531954","DOIUrl":null,"url":null,"abstract":"Electromigration lifetime and failure mechanism have been investigated for Cu/low-k interconnects at intermediate interconnect levels. It was observed that extrusion fails occurred mostly before resistance shift fails were detected. The activation energy for extrusion fails was determined to be 1.13 eV, comparable to the value of 0.99 eV for the resistance shift fails. This suggests the same failure mechanism for two failure modes: Cu mass transport primarily along the Cu/cap interface. The current exponent was extracted as 1.48 and 1.36 for extrusion fails and resistance shift fails, respectively. Physical failure analysis confirmed Cu extrusion near the anode and void formation at the cathode. Samples with improved pre-clean process before the cap deposition significantly suppressed EM induced extrusions, indicating a mechanically stronger Cu/cap interface. Furthermore, effective atomic sink at the anode end appeared to reduce the compressive stress buildup during EM, as it also significantly mitigated EM induced extrusion.","PeriodicalId":138206,"journal":{"name":"2013 IEEE International Reliability Physics Symposium (IRPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2013.6531954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electromigration lifetime and failure mechanism have been investigated for Cu/low-k interconnects at intermediate interconnect levels. It was observed that extrusion fails occurred mostly before resistance shift fails were detected. The activation energy for extrusion fails was determined to be 1.13 eV, comparable to the value of 0.99 eV for the resistance shift fails. This suggests the same failure mechanism for two failure modes: Cu mass transport primarily along the Cu/cap interface. The current exponent was extracted as 1.48 and 1.36 for extrusion fails and resistance shift fails, respectively. Physical failure analysis confirmed Cu extrusion near the anode and void formation at the cathode. Samples with improved pre-clean process before the cap deposition significantly suppressed EM induced extrusions, indicating a mechanically stronger Cu/cap interface. Furthermore, effective atomic sink at the anode end appeared to reduce the compressive stress buildup during EM, as it also significantly mitigated EM induced extrusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜互连的电迁移挤出动力学
研究了铜/低钾互连在中间互连水平下的电迁移寿命和失效机理。在检测到阻力位移失效之前,挤压失效大多发生。挤压失效的活化能为1.13 eV,而电阻移位失效的活化能为0.99 eV。这表明两种失效模式的失效机制相同:Cu质量主要沿着Cu/cap界面输运。目前的指数分别为1.48和1.36的挤压失败和阻力移位失败。物理失效分析证实了阳极附近的Cu挤压和阴极处的空洞形成。在帽沉积前改进预清洁工艺的样品显著抑制了EM诱导的挤压,表明Cu/cap界面具有更强的机械强度。此外,阳极端有效的原子吸收似乎减少了电磁过程中的压应力积累,因为它也显著减轻了电磁诱导的挤压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resistor-less power-rail ESD clamp circuit with ultra-low leakage current in 65nm CMOS process An age-aware library for reliability simulation of digital ICs Intrinsic study of current crowding and current density gradient effects on electromigration in BEOL copper interconnects Foundations for oxide breakdown compact modeling towards circuit-level simulations Making reliable memories in an unreliable world (invited)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1