Bayesian Classification of Flight Calls with a Novel Dynamic Time Warping Kernel

T. Damoulas, S. Henry, Andrew Farnsworth, Michael Lanzone, C. Gomes
{"title":"Bayesian Classification of Flight Calls with a Novel Dynamic Time Warping Kernel","authors":"T. Damoulas, S. Henry, Andrew Farnsworth, Michael Lanzone, C. Gomes","doi":"10.1109/ICMLA.2010.69","DOIUrl":null,"url":null,"abstract":"In this paper we propose a probabilistic classification algorithm with a novel Dynamic Time Warping (DTW) kernel to automatically recognize flight calls of different species of birds. The performance of the method on a real world dataset of warbler (Parulidae) flight calls is competitive to human expert recognition levels and outperforms other classifiers trained on a variety of feature extraction approaches. In addition we offer a novel and intuitive DTW kernel formulation which is positive semi-definite in contrast with previous work. Finally we obtain promising results with a larger dataset of multiple species that we can handle efficiently due to the explicit multiclass probit likelihood of the proposed approach.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper we propose a probabilistic classification algorithm with a novel Dynamic Time Warping (DTW) kernel to automatically recognize flight calls of different species of birds. The performance of the method on a real world dataset of warbler (Parulidae) flight calls is competitive to human expert recognition levels and outperforms other classifiers trained on a variety of feature extraction approaches. In addition we offer a novel and intuitive DTW kernel formulation which is positive semi-definite in contrast with previous work. Finally we obtain promising results with a larger dataset of multiple species that we can handle efficiently due to the explicit multiclass probit likelihood of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一种新的动态时间扭曲核的飞行呼叫贝叶斯分类
本文提出了一种基于动态时间扭曲(DTW)核的概率分类算法来自动识别不同种类鸟类的飞行叫声。该方法在莺(Parulidae)飞行呼叫的真实世界数据集上的表现与人类专家的识别水平相当,并且优于在各种特征提取方法上训练的其他分类器。此外,我们还提供了一种新的直观的DTW核公式,与以往的工作相比,它是正半确定的。最后,我们在更大的多物种数据集上获得了有希望的结果,由于所提出的方法的显式多类概率似然,我们可以有效地处理这些数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1