Industrial robotic systems with fuzzy logic controller and neural network

Sang-Bae Lee
{"title":"Industrial robotic systems with fuzzy logic controller and neural network","authors":"Sang-Bae Lee","doi":"10.1109/KES.1997.619443","DOIUrl":null,"url":null,"abstract":"Generally, when we control the robot, we should calculate exact inverse kinematics. However, inverse kinematics calculation is complex and it takes much time for the manipulator to control in real time. Therefore, the calculation of inverse kinematics can result in a significant control delay in real time. We present a method in which inverse kinematics can be calculated through fuzzy logic mapping, based on an exact solution through fuzzy reasoning instead of inverse kinematics calculation. Also, the result provides sufficient precision and transient tracking error can be controlled based on a fuzzy adaptive scheme. We also demonstrate that neural networks can be used effectively for the control of a nonlinear dynamic system with uncertain or unknown dynamics models and applied to the control robot. The advantage of using the neural approach over the conventional inverse kinematics algorithms is that neural networks can avoid time consuming calculations. We represent a good control efficiency through simulation of a 2-DOF manipulator by fuzzy logic controller, and demonstrate the effectiveness of the proposed learning scheme using feedforward neural networks, too.","PeriodicalId":166931,"journal":{"name":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1997.619443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Generally, when we control the robot, we should calculate exact inverse kinematics. However, inverse kinematics calculation is complex and it takes much time for the manipulator to control in real time. Therefore, the calculation of inverse kinematics can result in a significant control delay in real time. We present a method in which inverse kinematics can be calculated through fuzzy logic mapping, based on an exact solution through fuzzy reasoning instead of inverse kinematics calculation. Also, the result provides sufficient precision and transient tracking error can be controlled based on a fuzzy adaptive scheme. We also demonstrate that neural networks can be used effectively for the control of a nonlinear dynamic system with uncertain or unknown dynamics models and applied to the control robot. The advantage of using the neural approach over the conventional inverse kinematics algorithms is that neural networks can avoid time consuming calculations. We represent a good control efficiency through simulation of a 2-DOF manipulator by fuzzy logic controller, and demonstrate the effectiveness of the proposed learning scheme using feedforward neural networks, too.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑控制器和神经网络的工业机器人系统
一般在控制机器人时,都要计算精确的逆运动学。然而,机械臂的逆运动学计算复杂,实时控制耗时长。因此,逆运动学的计算在实时中会导致很大的控制延迟。本文提出了一种基于模糊推理的精确解而不是基于逆运动学计算的模糊逻辑映射计算逆运动学的方法。结果表明,基于模糊自适应方案可以有效地控制瞬态跟踪误差。我们还证明了神经网络可以有效地用于具有不确定或未知动力学模型的非线性动态系统的控制,并应用于控制机器人。与传统的逆运动学算法相比,使用神经网络的优点是神经网络可以避免耗时的计算。通过模糊逻辑控制器对二自由度机械臂的仿真,验证了所提出的学习方案在前馈神经网络中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy control system applied to pump start in a petroleum plant Classification of symbolic data using fuzzy set theory Fuzzy agents for reactive navigation of a mobile robot Fuzzy neural network for fuzzy modeling and control Efficient fuzzy modeling and evaluation criteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1