High Sensitive IoT Nanotechnology Sensors for Improved Data Acquisition and Processing

Sirak Gebrehiyot, M. Madiajagan, B. Pattanaik, E. Balamurugan, S. Selvakanmani, S. Vijayarangam
{"title":"High Sensitive IoT Nanotechnology Sensors for Improved Data Acquisition and Processing","authors":"Sirak Gebrehiyot, M. Madiajagan, B. Pattanaik, E. Balamurugan, S. Selvakanmani, S. Vijayarangam","doi":"10.1109/ICEARS53579.2022.9752333","DOIUrl":null,"url":null,"abstract":"Internet of Nano-Things is regarded as an extensive model for future applications that deploys an improved technical knowledge on data acquisition and classification. In this paper, we utilize the availability of gold nanoclusters in Internet of Things (IoT) sensors over a monolayer of grapheme film that tends to change with respect to the sensing properties. These IoT devices are utilized for transmit the sensing parameters to the local hub that deposits or offloads the data to cloud. The input data is then processed and classified to test the efficacy rate of the IoT sensors. The simulation is conducted on a real-time IoT nanotechnology sensor device to test the accuracy of data acquisition. The results show that the proposed model with nanotechnology IoT sensor is effective in capturing the data at a higher response and accurate rate than other methods.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9752333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Nano-Things is regarded as an extensive model for future applications that deploys an improved technical knowledge on data acquisition and classification. In this paper, we utilize the availability of gold nanoclusters in Internet of Things (IoT) sensors over a monolayer of grapheme film that tends to change with respect to the sensing properties. These IoT devices are utilized for transmit the sensing parameters to the local hub that deposits or offloads the data to cloud. The input data is then processed and classified to test the efficacy rate of the IoT sensors. The simulation is conducted on a real-time IoT nanotechnology sensor device to test the accuracy of data acquisition. The results show that the proposed model with nanotechnology IoT sensor is effective in capturing the data at a higher response and accurate rate than other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于改进数据采集和处理的高灵敏度物联网纳米技术传感器
纳米物联网被认为是未来应用的广泛模型,它部署了改进的数据采集和分类技术知识。在本文中,我们利用金纳米团簇在物联网(IoT)传感器中的可用性,在单层石墨烯薄膜上,石墨烯薄膜倾向于随传感特性而变化。这些物联网设备用于将传感参数传输到本地集线器,该集线器将数据存储或卸载到云。然后对输入数据进行处理和分类,以测试物联网传感器的效率。在实时物联网纳米传感器设备上进行仿真,测试数据采集的准确性。结果表明,采用纳米技术的物联网传感器可以有效捕获数据,并且具有更高的响应率和准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Solar Tracker Using Micro-controller "Core Strength" of Dance Lala Training Considering the Body Motion Tracking Video and Predictive Model Textile Antenna –Structure, Material and Applications Automated Classification of Atherosclerosis in Coronary Computed Tomography Angiography Images Based on Radiomics Study Using Automatic Machine Learning Cryptocurrency Exchange Rate Prediction using ARIMA Model on Real Time Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1