Wind Power Prediction in Different Months of the Year Using Machine Learning Techniques

Kesh Pun, Saurav M. S. Basnet, W. Jewell
{"title":"Wind Power Prediction in Different Months of the Year Using Machine Learning Techniques","authors":"Kesh Pun, Saurav M. S. Basnet, W. Jewell","doi":"10.1109/KPEC51835.2021.9446205","DOIUrl":null,"url":null,"abstract":"Integration of wind power into the grid has been rapidly increasing at both the transmission as well as distribution levels. Wind power generation is variable, nonlinear, and intermittent in nature. The monthly average and maximum wind power generation vary over the year. To effectively integrate wind power into the grid, it is vital to provide forecasting for different months. Therefore, the machine learning technique has been applied to forecast the wind power generation for each month separately. Its accuracy, root mean square error (RMSE), mean absolute error (MAE), and standard deviation (SD) of forecasting error have been analyzed for every month and the whole year.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"52 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KPEC51835.2021.9446205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of wind power into the grid has been rapidly increasing at both the transmission as well as distribution levels. Wind power generation is variable, nonlinear, and intermittent in nature. The monthly average and maximum wind power generation vary over the year. To effectively integrate wind power into the grid, it is vital to provide forecasting for different months. Therefore, the machine learning technique has been applied to forecast the wind power generation for each month separately. Its accuracy, root mean square error (RMSE), mean absolute error (MAE), and standard deviation (SD) of forecasting error have been analyzed for every month and the whole year.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术预测一年中不同月份的风力发电
风电入网在输电和配电两方面都在迅速增加。风力发电本质上是可变的、非线性的和间歇性的。月平均风力发电量和最大风力发电量在一年中有所不同。为了有效地将风电并入电网,提供不同月份的预测是至关重要的。因此,应用机器学习技术分别预测每个月的风力发电量。对每个月和全年的预测精度、预测误差的均方根误差(RMSE)、平均绝对误差(MAE)和标准差(SD)进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive Scheduling of Hydrogen Systems for Resilience Enhancement of Distribution Networks Node Voltage Estimation of Distribution System Using Artificial Neural Network Considering Weather Data Dual-pole Line Start PM Motor With Variable Coil Number for Applications With Constant Load Torque Techno-Economic Assessment of Voltage Stability Improvement Using SSSC and STATCOM in a Wind-Dominated Power System Frequency Stability Analysis of the Sending Subsystem in an Interconnected Power System with HVDC Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1