A power-aware digital feedforward neural network platform with backpropagation driven approximate synapses

J. Kung, Duckhwan Kim, S. Mukhopadhyay
{"title":"A power-aware digital feedforward neural network platform with backpropagation driven approximate synapses","authors":"J. Kung, Duckhwan Kim, S. Mukhopadhyay","doi":"10.1109/ISLPED.2015.7273495","DOIUrl":null,"url":null,"abstract":"This paper proposes a power-aware digital feedforward neural network platform that utilizes the backpropagation algorithm during training to enable energy-quality trade-off. Given a quality constraint, the proposed approach identifies a set of synaptic weights for approximation in a neural network. The approach selects synapses with small impact on output error, estimated by the backpropagation algorithm, for approximation. The approximations are achieved by a coupled software (reduced bit-width) and hardware (approximate multiplication in the processing engine) based design approaches. The full-chip design in 130nm CMOS shows, compared to a baseline accurate design, the proposed approach reduces system power by ~38% with 0.4% lower recognition accuracy in a classification problem.","PeriodicalId":421236,"journal":{"name":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2015.7273495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper proposes a power-aware digital feedforward neural network platform that utilizes the backpropagation algorithm during training to enable energy-quality trade-off. Given a quality constraint, the proposed approach identifies a set of synaptic weights for approximation in a neural network. The approach selects synapses with small impact on output error, estimated by the backpropagation algorithm, for approximation. The approximations are achieved by a coupled software (reduced bit-width) and hardware (approximate multiplication in the processing engine) based design approaches. The full-chip design in 130nm CMOS shows, compared to a baseline accurate design, the proposed approach reduces system power by ~38% with 0.4% lower recognition accuracy in a classification problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有反向传播驱动近似突触的功率感知数字前馈神经网络平台
本文提出了一种功率感知的数字前馈神经网络平台,该平台在训练过程中利用反向传播算法实现能量质量权衡。在给定质量约束的情况下,该方法确定一组突触权值用于神经网络的逼近。该方法选择对反向传播算法估计的输出误差影响较小的突触进行逼近。近似是通过基于设计方法的耦合软件(减小位宽)和硬件(处理引擎中的近似乘法)实现的。130nm CMOS全芯片设计表明,与基线精度设计相比,该方法在分类问题中降低了约38%的系统功耗和0.4%的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel slope detection technique for robust STTRAM sensing Power management for mobile games on asymmetric multi-cores Leveraging emerging nonvolatile memory in high-level synthesis with loop transformations An efficient DVS scheme for on-chip networks using reconfigurable Virtual Channel allocators Experimental characterization of in-package microfluidic cooling on a System-on-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1