A Cascaded Memory Polynomial-Neural Network Behavior Model For Digital Predistortion

Jiaming Chu, Wen-hua Chen, Long Chen, Zhenghe Feng
{"title":"A Cascaded Memory Polynomial-Neural Network Behavior Model For Digital Predistortion","authors":"Jiaming Chu, Wen-hua Chen, Long Chen, Zhenghe Feng","doi":"10.1109/NEMO49486.2020.9343656","DOIUrl":null,"url":null,"abstract":"Due to the increase of signal bandwidth in the current fifth-generation (5G) communication, the strong memory effects of the power amplifier (PA) seriously deteriorate the linearity of the system, while traditional digital predistortion (DPD) algorithms do not work well in this scenario. In this paper, a cascaded Memory Polynomial-Neural Network (MP-NN) model is proposed to model the PAs with strong memory effects. By including prior information, the input of the neural network is changed from input signals over a period of time to the basis functions of input signals. In this way, the training process converges faster and achieves good modeling accuracy. Experimental results on a 3.2-3.8 GHz Doherty PA show that the proposed model outperforms the traditional MP model, the adjacent channel power ratio (ACPR) performance is improved from -36.7dBc to-48.8dBc","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Due to the increase of signal bandwidth in the current fifth-generation (5G) communication, the strong memory effects of the power amplifier (PA) seriously deteriorate the linearity of the system, while traditional digital predistortion (DPD) algorithms do not work well in this scenario. In this paper, a cascaded Memory Polynomial-Neural Network (MP-NN) model is proposed to model the PAs with strong memory effects. By including prior information, the input of the neural network is changed from input signals over a period of time to the basis functions of input signals. In this way, the training process converges faster and achieves good modeling accuracy. Experimental results on a 3.2-3.8 GHz Doherty PA show that the proposed model outperforms the traditional MP model, the adjacent channel power ratio (ACPR) performance is improved from -36.7dBc to-48.8dBc
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字预失真的级联记忆多项式-神经网络行为模型
由于当前第五代(5G)通信中信号带宽的增加,功率放大器(PA)的强记忆效应严重恶化了系统的线性度,而传统的数字预失真(DPD)算法在这种情况下不能很好地工作。本文提出了一种级联记忆多项式神经网络(MP-NN)模型来模拟具有强记忆效应的神经网络。通过加入先验信息,神经网络的输入在一段时间内从输入信号转变为输入信号的基函数。这样,训练过程收敛速度更快,达到了较好的建模精度。在3.2 ~ 3.8 GHz Doherty PA上的实验结果表明,该模型优于传统的MP模型,相邻信道功率比(ACPR)性能从-36.7dBc提高到48.8 dbc
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Wideband Millimeter Wave E-shape Antenna in Package with Embedded Wafer Level Ball Grid Array Technology Mechanical and Electromagnetic Analysis of Flexible Fractal Interconnect Structures under High Frequency An Artificial Neural Network Based Design of Triple-Band Microstrip Patch Antenna for WLAN Applications A Regularization Scheme Based on Gaussian Mixture Model for EM Data Inversion Design of a Circularly Polarized Metasurface Antenna with Characteristic Mode Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1