Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, G. Buttazzo
{"title":"Memory Feasibility Analysis of Parallel Tasks Running on Scratchpad-Based Architectures","authors":"Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, G. Buttazzo","doi":"10.1109/RTSS.2018.00047","DOIUrl":null,"url":null,"abstract":"This work proposes solutions for bounding the worst-case memory space requirement for parallel tasks running on multicore platforms with scratchpad memories. It introduces a feasibility test that verifies whether memories are large enough to contain the maximum memory backlog that may be generated by the system. Both closed-form bounds and more accurate algorithmic techniques are proposed. It is shown how one can use max-plus algebra and solutions to the max-flow cut problem to efficiently solve the memory feasibility problem. Experimental results are presented to evaluate the efficiency of the proposed feasibility analysis techniques on synthetic workload and state-of-the-art benchmarks.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
This work proposes solutions for bounding the worst-case memory space requirement for parallel tasks running on multicore platforms with scratchpad memories. It introduces a feasibility test that verifies whether memories are large enough to contain the maximum memory backlog that may be generated by the system. Both closed-form bounds and more accurate algorithmic techniques are proposed. It is shown how one can use max-plus algebra and solutions to the max-flow cut problem to efficiently solve the memory feasibility problem. Experimental results are presented to evaluate the efficiency of the proposed feasibility analysis techniques on synthetic workload and state-of-the-art benchmarks.