MSURF: A new image matching algorithm which combines homography and SURF algorithm

Saishang Zhong, Yifu Chen, Min Zhang, Zhong Xie, Can Liu
{"title":"MSURF: A new image matching algorithm which combines homography and SURF algorithm","authors":"Saishang Zhong, Yifu Chen, Min Zhang, Zhong Xie, Can Liu","doi":"10.1109/GEOINFORMATICS.2015.7378709","DOIUrl":null,"url":null,"abstract":"High-accuracy image matching algorithms are a crucial step of 3D reconstruction from multiple images, which can be used to create the accurate 3D models of spatial entities. SURF, a conventional image matching algorithm, has the disadvantages of sparse matching, high incorrect rate. Thus, SURF matching algorithms are hard to meet the demand of high-accuracy 3D reconstruction. This paper introduces the MSURF, a new image matching algorithm which combines homography and SURF algorithm. Experiments are performed by comparing MSURF with conventional matching algorithms from the aspects of quantity and quality, and the experimental results verifies that MSURF can not only increase the quantity of match points, but also improve the accuracy of match points. In addition, the paper analyzes the experimental result, and acquired the application features of MSURF. Thereby, the new proposed matching algorithm, MSURF, extends and improves the existing matching algorithm, and ensures the high-accuracy 3D reconstruction.","PeriodicalId":371399,"journal":{"name":"2015 23rd International Conference on Geoinformatics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2015.7378709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

High-accuracy image matching algorithms are a crucial step of 3D reconstruction from multiple images, which can be used to create the accurate 3D models of spatial entities. SURF, a conventional image matching algorithm, has the disadvantages of sparse matching, high incorrect rate. Thus, SURF matching algorithms are hard to meet the demand of high-accuracy 3D reconstruction. This paper introduces the MSURF, a new image matching algorithm which combines homography and SURF algorithm. Experiments are performed by comparing MSURF with conventional matching algorithms from the aspects of quantity and quality, and the experimental results verifies that MSURF can not only increase the quantity of match points, but also improve the accuracy of match points. In addition, the paper analyzes the experimental result, and acquired the application features of MSURF. Thereby, the new proposed matching algorithm, MSURF, extends and improves the existing matching algorithm, and ensures the high-accuracy 3D reconstruction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSURF:一种结合了单应性和SURF算法的图像匹配新算法
高精度图像匹配算法是多幅图像三维重建的关键步骤,可用于创建空间实体的精确三维模型。SURF是传统的图像匹配算法,存在匹配稀疏、错误率高的缺点。因此,SURF匹配算法难以满足高精度三维重建的需求。本文介绍了一种结合单应性和SURF算法的图像匹配新算法MSURF。从数量和质量两方面对MSURF与传统匹配算法进行了实验比较,实验结果验证了MSURF不仅可以增加匹配点的数量,而且可以提高匹配点的精度。此外,本文还对实验结果进行了分析,得出了MSURF的应用特点。因此,本文提出的匹配算法MSURF对现有匹配算法进行了扩展和改进,保证了三维重建的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A conceptual framework for the design of geo-dynamics visualization Research and application of Jinggangshan geological disaster prevention system based on wireless sensor network system Random forests methodology to analyze landslide susceptibility: An example in Lushan earthquake Identification of the Yancheng region water quality using GIS and fuzzy synthetic evaluation approach The progress in the research of flood damage loss assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1