T. Ma, Zhitian Zhang, Wenyan Wang, Chao Zhang, G. Feng
{"title":"Investigation of lateral-field-excitation on LiTaO3 single crystal","authors":"T. Ma, Zhitian Zhang, Wenyan Wang, Chao Zhang, G. Feng","doi":"10.1109/FREQ.2010.5556282","DOIUrl":null,"url":null,"abstract":"Lateral field excitation (LFE) acoustic wave devices, which employ two electrodes on the same surface of a piezoelectric substrate, have been found attractive in sensing applications. However, up to now, the cut for the pure-LFE mode of LiTaO3 is still unknown, which has hindered the application of LiTaO3 pure-LFE mode device in liquid phase sensing. In this work, pure-LFE on LiTaO3 was investigated both theoretically and experimentally. The calculated results showed that when the driving electric field direction is parallel to the crystallographic X-axis of the piezoelectric substrate, (yxl)90° LiTaO3 LFE device works on pure-LFE mode with a piezoelectric coupling factor of 44.52% for slow shear c mode of LFE. The devices' impedance curves were measured. The experimental results agreed with the theoretical prediction well.","PeriodicalId":344989,"journal":{"name":"2010 IEEE International Frequency Control Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Frequency Control Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2010.5556282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Lateral field excitation (LFE) acoustic wave devices, which employ two electrodes on the same surface of a piezoelectric substrate, have been found attractive in sensing applications. However, up to now, the cut for the pure-LFE mode of LiTaO3 is still unknown, which has hindered the application of LiTaO3 pure-LFE mode device in liquid phase sensing. In this work, pure-LFE on LiTaO3 was investigated both theoretically and experimentally. The calculated results showed that when the driving electric field direction is parallel to the crystallographic X-axis of the piezoelectric substrate, (yxl)90° LiTaO3 LFE device works on pure-LFE mode with a piezoelectric coupling factor of 44.52% for slow shear c mode of LFE. The devices' impedance curves were measured. The experimental results agreed with the theoretical prediction well.