N. Posthuma, S. You, S. Stoffels, H. Liang, M. Zhao, S. Decoutere
{"title":"Gate architecture design for enhancement mode p-GaN gate HEMTs for 200 and 650V applications","authors":"N. Posthuma, S. You, S. Stoffels, H. Liang, M. Zhao, S. Decoutere","doi":"10.1109/ISPSD.2018.8393634","DOIUrl":null,"url":null,"abstract":"Enhancement mode p-GaN gate HEMTs with two different gate architectures are compared. The gate is realized by stacked (1-mask) or separate patterning (3-mask) of the p-GaN and gate metal layers. The 3-mask gate architecture, in this work implemented with a novel TiN interlayer, offers the advantage of a low gate resistance, increased flexibility in field plate design and reduced dynamic RDS-ON at high VDS. Both for 200 and 650 V applications excellent device performance is demonstrated on 200 mm substrates using Au-free processing, with a threshold voltage of well above 2 V and a dynamic RDS-ON of below 20%. The 650 V rated device, with a hard breakdown voltage of 1000 V, passes the wafer level HTRB test at 150 °C.","PeriodicalId":166809,"journal":{"name":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2018.8393634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Enhancement mode p-GaN gate HEMTs with two different gate architectures are compared. The gate is realized by stacked (1-mask) or separate patterning (3-mask) of the p-GaN and gate metal layers. The 3-mask gate architecture, in this work implemented with a novel TiN interlayer, offers the advantage of a low gate resistance, increased flexibility in field plate design and reduced dynamic RDS-ON at high VDS. Both for 200 and 650 V applications excellent device performance is demonstrated on 200 mm substrates using Au-free processing, with a threshold voltage of well above 2 V and a dynamic RDS-ON of below 20%. The 650 V rated device, with a hard breakdown voltage of 1000 V, passes the wafer level HTRB test at 150 °C.