Using spatial characteristics to aid automation of SOM segmentation of functional image data

Patrick O'Driscoll, E. Merényi, R. Grossman
{"title":"Using spatial characteristics to aid automation of SOM segmentation of functional image data","authors":"Patrick O'Driscoll, E. Merényi, R. Grossman","doi":"10.1109/WSOM.2017.8020012","DOIUrl":null,"url":null,"abstract":"We propose a new similarity measure, Combined Connectivity and Spatial Adjacency (CCSA), to be used in hierarchical agglomerative clustering (HAC) for automated segmentation of Self-Organizing Maps (SOMs, Kohonen [1]). The CCSA measure is specifically designed to assist segmentation of large, complex, functional image data by exploiting general spatial characteristics of such data. The proposed CCSA measure is constructed from two strong indicators of cluster structure: the degree of localization of data points in physical space and the degree of connectivity of SOM prototypes (as defined by Taçdemir and Merényi [2]). The new measure is expected to enhance cluster capture in large functional image data cubes such as hyperspectral imagery or fMRI brain images, where many relevant clusters exist with widely varying statistical properties and in complex relationships both in feature space and in physical (image) space. We demonstrate the effectiveness of our approach using the CCSA measure on progressively complex synthetic spatial data and on real fMRI brain data.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new similarity measure, Combined Connectivity and Spatial Adjacency (CCSA), to be used in hierarchical agglomerative clustering (HAC) for automated segmentation of Self-Organizing Maps (SOMs, Kohonen [1]). The CCSA measure is specifically designed to assist segmentation of large, complex, functional image data by exploiting general spatial characteristics of such data. The proposed CCSA measure is constructed from two strong indicators of cluster structure: the degree of localization of data points in physical space and the degree of connectivity of SOM prototypes (as defined by Taçdemir and Merényi [2]). The new measure is expected to enhance cluster capture in large functional image data cubes such as hyperspectral imagery or fMRI brain images, where many relevant clusters exist with widely varying statistical properties and in complex relationships both in feature space and in physical (image) space. We demonstrate the effectiveness of our approach using the CCSA measure on progressively complex synthetic spatial data and on real fMRI brain data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用空间特征辅助功能图像数据的SOM分割自动化
我们提出了一种新的相似性度量,结合连通性和空间邻接性(CCSA),用于自组织地图(SOMs, Kohonen[1])的自动分割的层次聚集聚类(HAC)。CCSA措施是专门设计的,通过利用这些数据的一般空间特征来帮助分割大型、复杂、功能图像数据。本文提出的CCSA度量由两个强有力的聚类结构指标构建而成:数据点在物理空间中的定位程度和SOM原型的连通性程度(由tademir和mernyi[2]定义)。新措施有望增强大型功能图像数据立方体中的聚类捕获,如高光谱图像或fMRI脑图像,其中许多相关的聚类存在着广泛不同的统计特性,并且在特征空间和物理(图像)空间中都存在复杂的关系。我们使用CCSA测量逐步复杂的合成空间数据和真实的fMRI脑数据证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1