Nonlinear dynamic identification using supervised neural gas algorithm

Iván Machón-González, Hilario López-García
{"title":"Nonlinear dynamic identification using supervised neural gas algorithm","authors":"Iván Machón-González, Hilario López-García","doi":"10.1109/WSOM.2017.8020031","DOIUrl":null,"url":null,"abstract":"The dynamic identification of a nonlinear plant is not a trivial issue. The application of a neural gas network that is trained with a supervised batch version of the algorithm can produce identification models in a robust way. In this paper, the neural model identifies each local transfer function demonstrating that the local linear approximation can be done. Moreover, other parameters are analyzed in order to obtain a correct modeling.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamic identification of a nonlinear plant is not a trivial issue. The application of a neural gas network that is trained with a supervised batch version of the algorithm can produce identification models in a robust way. In this paper, the neural model identifies each local transfer function demonstrating that the local linear approximation can be done. Moreover, other parameters are analyzed in order to obtain a correct modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于监督神经气体算法的非线性动态辨识
非线性对象的动态辨识不是一个简单的问题。利用该算法的监督批处理版本训练的神经气体网络可以产生鲁棒的识别模型。在本文中,神经网络模型识别了每个局部传递函数,证明了局部线性逼近是可以做到的。此外,为了得到正确的模型,还对其他参数进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1