Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson
{"title":"Online group-sparse estimation using the covariance fitting criterion","authors":"Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson","doi":"10.23919/EUSIPCO.2017.8081580","DOIUrl":null,"url":null,"abstract":"In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.