Y. Hayashi, H. Kawano, H. Miyahara, A. Okino, Yudai Nomura, T. Takamatsu, Takeshi Azuma, Syosaku Ota
{"title":"3D Printed Mini Plasma Jet: Application To Hemostatic Treatment For Endoscope","authors":"Y. Hayashi, H. Kawano, H. Miyahara, A. Okino, Yudai Nomura, T. Takamatsu, Takeshi Azuma, Syosaku Ota","doi":"10.1109/PLASMA.2017.8496372","DOIUrl":null,"url":null,"abstract":"In the medical field, demand for endoscopes has been increasing not only for examination but also for minimally invasive treatment. For endoscopic hemostasis, clips and plasma devices called Argon Plasma Coagulation (APC) are widely used. Although APC has a short hemostasis time, there is a problem with a tissue that is thermally damaged by high plasma temperature. Meanwhile, promotion of blood coagulation by atmospheric low temperature plasma has been reported. Blood points irradiated with the plasma can clot without thermal damage and stop bleeding. Therefore, applying atmospheric low temperature plasma to endoscopic hemostasis can be expected as a minimally invasive hemostatic method. For that purpose, a mini plasma source that can be inserted into a forceps port of endoscope is required. However, conventional plasma source had been manufactured by machining, there was limitation for miniaturization.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the medical field, demand for endoscopes has been increasing not only for examination but also for minimally invasive treatment. For endoscopic hemostasis, clips and plasma devices called Argon Plasma Coagulation (APC) are widely used. Although APC has a short hemostasis time, there is a problem with a tissue that is thermally damaged by high plasma temperature. Meanwhile, promotion of blood coagulation by atmospheric low temperature plasma has been reported. Blood points irradiated with the plasma can clot without thermal damage and stop bleeding. Therefore, applying atmospheric low temperature plasma to endoscopic hemostasis can be expected as a minimally invasive hemostatic method. For that purpose, a mini plasma source that can be inserted into a forceps port of endoscope is required. However, conventional plasma source had been manufactured by machining, there was limitation for miniaturization.