Convolution Based Energy Detection Scheme for Cognitive Radio Systems

T. Xifilidis, K. Psannis, G. Minopoulos, G. Kokkonis, Y. Ishibashi
{"title":"Convolution Based Energy Detection Scheme for Cognitive Radio Systems","authors":"T. Xifilidis, K. Psannis, G. Minopoulos, G. Kokkonis, Y. Ishibashi","doi":"10.1109/WSCE49000.2019.9041129","DOIUrl":null,"url":null,"abstract":"In this paper, the authors investigate an energy detection scheme for Cognitive Radio (CR). The mathematical analysis of the probability density function (pdf) based Likelihood Ratio Test (LRT) statistic for deciding in favor of Primary User (PU) absence or presence proceeds by means of convolution statistics. Dynamic threshold is set for comparing with LRT test based on fixed probability of false alarm and different number of samples. Compressive Sensing (CS) based minimum required number of samples and Central Limit Theorem (CLT) based equivalent number are the two comparison benchmarks, based on Gaussian statistics. The maximum percentage from this cases is derived, in order to compare with the maximum percentage of samples above threshold to the total number of samples for the Rayleigh, Rician and Nakagami-m fading channels. A related algorithm is provided along with technical interpretation of simulation results. Conclusions finalize the paper.","PeriodicalId":153298,"journal":{"name":"2019 2nd World Symposium on Communication Engineering (WSCE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd World Symposium on Communication Engineering (WSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCE49000.2019.9041129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the authors investigate an energy detection scheme for Cognitive Radio (CR). The mathematical analysis of the probability density function (pdf) based Likelihood Ratio Test (LRT) statistic for deciding in favor of Primary User (PU) absence or presence proceeds by means of convolution statistics. Dynamic threshold is set for comparing with LRT test based on fixed probability of false alarm and different number of samples. Compressive Sensing (CS) based minimum required number of samples and Central Limit Theorem (CLT) based equivalent number are the two comparison benchmarks, based on Gaussian statistics. The maximum percentage from this cases is derived, in order to compare with the maximum percentage of samples above threshold to the total number of samples for the Rayleigh, Rician and Nakagami-m fading channels. A related algorithm is provided along with technical interpretation of simulation results. Conclusions finalize the paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积的认知无线电系统能量检测方案
本文研究了一种认知无线电(CR)能量检测方案。利用卷积统计对基于概率密度函数(pdf)的似然比检验(LRT)统计量判断主用户(PU)是否在场进行了数学分析。动态阈值是根据固定的虚警概率和不同的样本数量,设置与LRT测试比较的动态阈值。基于压缩感知(CS)的最小样本数和基于中心极限定理(CLT)的等效样本数是基于高斯统计的两个比较基准。为了与超过阈值的样本占瑞利、瑞利和中agami-m衰落信道样本总数的最大百分比进行比较,我们导出了这种情况下的最大百分比。给出了一种相关算法,并给出了仿真结果的技术解释。结束语,完成论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WSCE 2019 Author Index AGRITECHNO: A Development of a Revolutionized Farmer Assisted Agricultural Product Forecasting Mobile App System Effect of Robot Position Control with Force Information for Cooperative Work between Remote Robot Systems A Hierarchical Beam Search Algorithm with BetterPerformance for Millimeter-Wave Communication Systolic Lidar-based Fuzzy Logic System for border Monitoring using FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1