{"title":"Inconsistencies in big data","authors":"Du Zhang","doi":"10.1109/ICCI-CC.2013.6622226","DOIUrl":null,"url":null,"abstract":"We are faced with a torrent of data generated and captured in digital form as a result of the advancement of sciences, engineering and technologies, and various social, economical and human activities. This big data phenomenon ushers in a new era where human endeavors and scientific pursuits will be aided by not only human capital, and physical and financial assets, but also data assets. Research issues in big data and big data analysis are embedded in multi-dimensional scientific and technological spaces. In this paper, we first take a close look at the dimensions in big data and big data analysis, and then focus our attention on the issue of inconsistencies in big data and the impact of inconsistencies in big data analysis. We offer classifications of four types of inconsistencies in big data and point out the utility of inconsistency-induced learning as a tool for big data analysis.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

We are faced with a torrent of data generated and captured in digital form as a result of the advancement of sciences, engineering and technologies, and various social, economical and human activities. This big data phenomenon ushers in a new era where human endeavors and scientific pursuits will be aided by not only human capital, and physical and financial assets, but also data assets. Research issues in big data and big data analysis are embedded in multi-dimensional scientific and technological spaces. In this paper, we first take a close look at the dimensions in big data and big data analysis, and then focus our attention on the issue of inconsistencies in big data and the impact of inconsistencies in big data analysis. We offer classifications of four types of inconsistencies in big data and point out the utility of inconsistency-induced learning as a tool for big data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据的不一致性
由于科学、工程和技术的进步,以及各种社会、经济和人类活动的发展,我们面临着以数字形式产生和捕获的大量数据。这种大数据现象开启了一个新时代,在这个时代,人类的努力和科学追求不仅需要人力资本、物质和金融资产,还需要数据资产。大数据与大数据分析研究问题嵌入多维科技空间。在本文中,我们首先对大数据和大数据分析中的维度进行了深入的研究,然后将重点放在大数据中的不一致性问题以及不一致性对大数据分析的影响上。我们对大数据中的四种不一致性进行了分类,并指出了不一致性诱导学习作为大数据分析工具的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordering: A reliable qualitative information for the alignment of sketch and metric maps Visual words sequence alignment for image classification Survey of measures for the structural dimension of ontologies An emotional regulation model with memories for virtual agents Visual words selection based on class separation measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1